
J.M. Cueva Lovelle et al. (Eds.): ICWE 2003, LNCS 2722, pp. 349–352, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Hyperlinks Analysis of Dynamic Web Applications

Angle Hsieh and Dowming Yeh

National Kaoshiung Normal University
Kaoshiung, Taiwan 802, Republic of China

AngleHsieh@ttnt.com.tw, dmyeh@nknucc.nknu.edu.tw

Abstract. There are several approaches available to implement complex and
adaptive Web Application. One of the most favorite approaches is dynamic Web
page technique. Many structural problems such as void links and broken links
may be hidden in a web site with dynamic pages. Thus, techniques to aid in un-
derstanding and restructuring of a Web site can help Web masters significantly.
This work proposes a set of structural analysis methods for diagnosis of some
common problems to meet real maintenance needs. Systemized analyses are
employed to gather key attributes of the structure in a Web site, and the struc-
tural information gathered can be utilized to analyze the quality of the site struc-
ture easily.

1 Introduction

Maintaining a Web-based application is not easier than a traditional application. Nu-
merous arts, page layouts and hyperlink designs are used and slacked in designing
Web-based application, aside from database connection and program code. There are
several approaches available to implement complex and adaptive Web Application.
One of the most favorite approaches is to produce Web pages dynamically using
server-side script languages such as ASP. This gives developers flexibility and adapta-
bility to construct more powerful Web applications. A Web page produced by the
script is a dynamic Web page. Web sites or Web applications with dynamic pages are
thus called dynamic Web sites or applications.

There are few studies addressing the issues of Web site understanding and restruc-
turing [1]. Ricca and Tonella completely tendered a method for structure readjusting
and implemented tools, ReWeb and TestWeb, for modeling and understanding Web
sites [4] [5]. These tools can analyze Web sites, and display the outcome of structural
analyses. However, they only can analyze sites consisted of static pages with frames.

Di Lucca et. al. also present a tool for reverse engineering Web applications into
UML diagrams [2]. They extract the attributes of Web pages into an Intermediate
Representation Form, and then translate this Form into a relational database. The class
diagrams can be produced directly from the database. Other diagrams such as use case
diagram and sequence diagram may be constructed after performing some queries on
the database. There is little discussion regarding dynamic page issues in these works.

350 A. Hsieh and D. Yeh

2 Algorithms for Gathering Hyperlinks

The StruGatherer algorithm processes all Web pages in a target site, and the results
are represented in the form of page objects and link objects. A page object may own
many link objects, but a link object can only belong to one page object. A page object
P<p, lo, d)> has attributes "page name", "page location", "page type". The page name
p with page location lo attributes can identify a unique page in the site. In the follow-
ing discussion, the Active Server Page (ASP) will be used to explain the concept of
our methods and how it works.

A page object may own zero to n link objects, L<q, llo, lvn, lvp>. A link object has
attributes "target page name", "target page location", "identification number", and
"variable location". The attribute lvn is an identification number to identify links that
are created from the same hyperlink through variable assignments. The name of the
page containing the link will be saved in lvp. Each link object will be conjoined with
its containing page object upon creation.

The pseudo-code of the algorithm is shown in Figure 1. PageInfo creates a new
page object P(v) corresponding to the page v. The DecomposePage procedure sepa-
rates the dynamic blocks BD from the static blocks [3]. Similar to PageInfo, LinkInfo
extracts the essential information from a hyperlink and creates a link object. Then the
target page name is examined to determine whether it is a regular link. If it is a vari-
able, the link object L(l) becomes a virtual link object by setting its identification
number lvn to i. The number i is a unique number beginning with zero and increases
progressively when new variables are processed. This number is to identify that dif-
ferent virtual link objects are in fact assigned with the same hyperlink.

Algorithm StruGatherer (D)
Input: D = {all pages in home directory, sub-directory, virtual directory}
1. i 1
2. for each pages v in D do //visit all of pages
3. P(v) PageInfo(v)
4. BD (v) DecomposePage(v)
5. for each link l in BD(v) do
6. P(v).L(l) LinkInfo(l)
7. if P(v).L(l).q is not a regular link // variable
8. P(v). lvn i
9. Call GatherLinkVariable (D, P, v, P(v).L(l).q, l)
10. i i + 1
11. end if
12. loop
13. loop
14. return P // Return the set of page objects

Fig. 1. The StruGatherer algorithm

The pseudo-code of algorithm GatherLinkVariable is divided into three segments
depending on the kind of the variable under analysis: dynamic and static local variable,
inquiry variable, and global variable. We do not consider database objects since for a
database field object, all possible links can be determined from the database field.

Hyperlinks Analysis of Dynamic Web Applications 351

Algorithm GatherLinkVariable (D, P, v, b, l)
Input: D = { all pages in home directory, sub-directory, virtual directory}, the page
object set P, current page v, the variable name b, the link l
1. select case type(b)
2. case local variable
3. fv open(v)
4. while not fv.EOF and MatchLHS(b) do
5. r FetchRHS() //right hand side of "b="
6. if r is a variable then Call GatherLinkVariable(D, P, v, r, l)
7. if r is a page then Call CreateActualLinkObject(r, P(v).L(l))
8. loop
9. case inquiry variable
10. for each pages cp in D do
11. fcp open(fcp)
12. while not fcp.EOF and MatchLHS(FetchArg(b)) do
13. if SamePageName(cp, P(v).p))
14. r FetchRHS()
15. if r is a variable then Call GatherLinkVariable(D, P, v, r, l)
16. if r is a page then Call CreateActualLinkObject(r, P(v).L(l))
17. end if
18. loop
19. loop
20. case global variable
21. for each pages cp in D do
22. similar procedure to local variable
23. loop
24. end select

Fig. 2. The GatherLinkVariable algorithm

The scope of a local variable is the containing page. Therefore, all possible link
values can be extracted from v. In the loop, all tokens at the left hand side of an as-
signment statement and matching the variable b are successively discovered and the
value at the right hand side of the assignment statement is extracted. If an actual page
is found, a new link object will be created by CreateActualLinkObject and added into
the page object P(v). This algorithm may be called recursively since variable may be
assigned values by the other variables.

Inquiry variables act like parameter passing for conventional programs and appear
as parameters for a request method in the target page. According to the transmission
principle of inquiry variable, the source of an inquiry variable could be any page.
Therefore, the outer loop processes every page including itself and the link objects are
extracted in the inner loop. The inquiry variable must be extracted by FetchArg for-
asmuch it is an argument in a request method. An important point is to ascertain that
the target page of the submitted value is the same as the current page P(v).p when the
variable name is found. This is accomplished by the SamePageName procedure.

Global variables are visible to all pages in a site so that a page can communicate
with any other page without passing arguments. In the case of ASP, the lifetime of
global variables can exist in a user session or the lifetime of the application.

352 A. Hsieh and D. Yeh

Many structural problems, such as broken link, long-distance path, different root,
etc., may be hidden in a dynamic Web site. If a hyperlink is composed of a variable,
but the variable is not given any page name or the target of a regular link is not speci-
fied, it is called a void link. A void link involving variables is represented by a virtual
link object without corresponding link objects with actual target page. Recalls that any
link objects created by GatherLinkVariable must correspond to a virtual link object
with the same ID number in attribute lvn. Therefore, by examining the attribute lvn of
virtual link objects, if a ID number appears only once, it is a void link. Algorithms to
detect void link and broken link errors in a Web site are described in [3]. Broken links
result from unavailable target pages.

3 Conclusions

A real running Web site is studied to test the feasibility of our methods. The site under
study contains a total of 85 pages, and more than 80 percent of them are dynamic
pages. The main scripting languages are ASP and JavaScript. There are a total of 325
hyperlinks in this site. Most are dynamic links. After analysis, two hyperlinks are
found void. There are five broken links, three dynamic links and two static links. The
analysis result gives Web master some helpful suggestions to improve the site.

Dynamic pages are becoming more popular because pages can reflect most updated
information and can be customized much easier than a static page. However, the main-
tenance issue of a dynamic Web site has presented new challenges to the research
community. Our contribution to Web site maintenance is in defining a set of structural
analysis methods for diagnosis of some common problems to meet real maintenance
needs. In the future, we plan to implement these algorithms to be able to gather and
analyze dynamic Web sites automatically.

References

1. S. Chung and Y. S. Lee, "Reverse software engineering with uml for web site mainte-
nance", in Proceedings of the 1st International Conference on Web Information Systems
Engineering, Hong-Kong, China, June 2001.

2. G. A. Di Lucca, A. R. Fasolino, F. Pace, P. Tramontana, U. De Carlini, "WARE: a tool for
the Reverse Engineering of Web Applications", in Proceedings of the Sixth European
Conference on Software Maintenance and Reengineering, Budapest, Hungary, 2002.

3. A. Hsieh, "StruWeb: A Mehthod for Understanding and Restructuring Dynamic Web
Sites", Master Thesis, MIS Dept. National Pingtung University of Science and Technol-
ogy, July 2002.

4. F. Ricca and P. Tonella, "Understanding and Restructuring Web Sites with ReWeb", IEEE
MultiMedia, April-June 2001.

5. F. Ricca and P. Tonella, "Analysis and Testing of Web Applications", in Proceedings of
the 23rd IEEE International Conference on Software Engineering, Toronto, Ontario,
Canada, May 12–19, 2001.

	Introduction
	Algorithms for Gathering Hyperlinks
	Conclusions
	References

