

J.M. Cueva Lovelle et al. (Eds.): ICWE 2003, LNCS 2722, pp. 403–406, 2003.
© Springer-Verlag Berlin Heidelberg 2003

An Architecture for Semantics-Based Interaction of
Spontaneously Connecting Software

Teemu Vaskivuo

VTT Electronics, P.O. Box 1100, 90571 Oulu, Finland
teemu.vaskivuo@vtt.fi

Abstract. Generally, software entities such as components or objects are made
to interact with each other according to information that is known at design-
time. Spontaneously interacting software elements have to overcome this, as
they are not necessarily designed together. This paper presents an approach for
connecting software functionality by utilising semantically linked information
about the capabilities and features of software entities, instead of utilising their
strictly defined software interfaces. The approach is presented through a soft-
ware architecture for a design that performs suggested kind of functionality.

1 Introduction

Generally, software entities such as components or objects are made to interact with
each other according to information that is known at design-time. The design-time in-
formation used in connecting software functionality is commonly present in forms of
interfaces, class descriptions, or similar information structures. Those structures carry
very little information according to which the functionality represented by them could
be analysed or categorised. By complementing the presence of software entities with
additional, semantically linked information, software interactions can be made under-
standable on a higher conceptual level. Additional semantic information provides the
software entities the means to access the meaning related to the actions that they
commit, the events that take place, and the services they provide and use.

In a spontaneous environment, connections and disconnections between software
entities take place in an unplanned manner. Such connectivity requires that the soft-
ware entities are able to extract information about each other’s properties. Enabling
technologies for spontaneous networking such as Jini, UPnP, and Salutation [3] pro-
vide limited capabilities to express the semantic relations between software entities
that they connect together. This paper presents a model and an implementation of a
software framework that provides spontaneously connecting software entities the abil-
ity to utilise knowledge about the semantic connections there are between them and
other entities (such as software entities, conceptual entities, or information).

Annotations about the semantic connections between pieces of information should
be able to be understood by several individual parties. Such consistency can be
achieved by agreeing on certain rules that are used when annotating information. In
the computerised world, an ontology is an explicit specification of a conceptualisation
[1]. By agreeing upon the used ontology, the information presented about a piece of
information can be understood correctly at the specified level of conceptualisation.

404 T. Vaskivuo

Different ways to represent [5] and to use conceptual semantic information and on-
tologies in order to describe content of information plays an important part in research
efforts related to agents [2], and the semantic web [4]. Also the presented approach
utilises ontologies in specifying the used conceptualisation.

2 Model and Implementation

Spontaneous networking of software that bases on semantically linked information
requires a mechanism that helps in representing the semantic relations between infor-
mation and functionality. With the help of such mechanism, the software can be made
to handle generic occurrences, each of which can be defined on a conceptually high
level. The conceptual definitions can then be applied to many practical cases.

Fig. 1. Conceptual architecture of semantic middleware

Here, “semantic middleware” is proposed to perform the task of creating an ab-
stract representation of the environment. Semantic middleware can be considered as
an architectural layer that abstracts the practical functionality of a service environ-
ment to a conceptually higher level. Practical tasks of semantic middleware are to:

• Produce a semantically cross-linked view of the elements in the surrounding
environment (or context) of a software entity.

• Enable efficient queries to explore the content of the produced view.
• Provide means to interact with the environment presented in the view.
The semantic view can be considered as an automatically updated space that repre-

sents the state of the surrounding context with semantically cross-linked elements. In-
formation in the semantic view is then further utilised by applications in various tasks.

Presented semantic middleware comprises a layered architecture. The layers, visi-
ble in Figure 1, are abstract element space, context abstraction, and context sensing.
Abstract Element Space (AES) embodies the semantic view. Applications utilise se-
mantic middleware by interacting with the AES. Context Abstractor (CA) is the layer
that produces information to the AES according to ontologies that specify the seman-
tic relations between pieces of information. Context Abstractor Elements (CAEs)
sense the context and create an abstracted representation of it. Together several CAEs
produce the context-sensing layer. CAEs are add-on components. They can be con-

Surrounding contextual information: practical computing environment,
services, resources, available information

Context
Abstractor Element

Context Abstractor

Context
Abstractor Element

Context
Abstractor Element

Abstract Element Space

Application

(AES)

(CA)

(CAE)

An Architecture for Semantics-Based Interaction of Spontaneously Connecting Software 405

nected to the CA to sense some specific feature, ability, service, resource, sequence,
event, or any other element from the surrounding computing environment.

Some of the CAEs can abstract information that already exists within the AES.
Thus it is possible to create a taxonomy where more atomic elements are used in con-
structing larger conceptual entities within the AES. An example of such operation is
visualised by the leftmost CAE in Figure 1. That particular CAE only abstracts infor-
mation that is already present in the AES.

Fig. 2. A diagram representing the most important class relations within the implementation

A demonstration implementation of semantic middleware was created as a part of
the presented work. Figure 2 shows the classes that form the core framework of the
implemented system. From Figure 2 it can be seen that the CAE layer comprises in-
stances of Activators and Implementations. Activators function when CAE-initiated
active operation is required, for example when a CAE senses something. Implementa-
tions represent the CAE’s closest relationship to resources. Each CAE has to embody
the ways to interact with the resources it abstracts.

In the CA layer, Realisations represent realisable Instances of different conceptual
entities that are defined within an Ontology. Realisations are provided by CAEs and
used by Instances through the CA layer. The CA layer stores representations of On-
tologies. An Ontology comprises (not shown in Figure 2) a certain BaseOntology, and
special CAE Specific Ontologies that accompany each CAE in order to represent the
information provided by each particular CAE. Information within the Ontology is de-
scribed with OntologyElements that represent the elements within the ontology, and
OntologyRelations that represent the relations between the interconnected elements.

The AES layer incorporates the actual storage for instantiated elements. The
instantiated elements are represented by instances of the Instance class. Each Instance
is connected to a certain OntologyElement. Accordingly, the semantic relations of an
Instance can be examined through the relations its representative OntologyElement
has within the Ontology. An Instantiator represents an entity that is in charge of
instantiating Instances. Instantiators control the instantiations and keep count of the
elements instantiated by them. For example, CAEs or applications can act as
Instantiators. Utilisation of the semantic middleware takes place through the AES
layer, which provides its users an efficient set of operations for examining and
interacting with the contents of the AES.

Context
Abstractor
Elements

Activator

Ontology
Element

Instancerefers to

Ontology
Relation

connects

has has

induces

instantiates

realises

Ontology

belong to

Implementation

performs actions for

owns

is-a

0..*

1

1

0..*

1
0..*

1

1

0..*

Abstract Element
Space

Context
Abstractor

0..*

Realisation

Instantiator

knows

0..*

406 T. Vaskivuo

The demonstration implementation was created with Java and C++. The CAEs in it
were limited to a Bluetooth Abstractor element, a Visual Abstraction element, and a
Primitive Abstractor element. By utilising these abstractor elements, a test case of
context abstraction was carried out. In the test case, a demonstrative and simple text-
based communication was made to establish itself between spontaneously connected
devices each time the communication ability was available. The Bluetooth abstractor
element provided a source of spontaneous connections and disconnections between
devices. The Visual Abstractor Element was made to abstract a part of the Java class
library in order to produce a generic tool for displaying information. The Primitive
Abstractor Element was made to provide abstractions of certain basic resources, such
as primitive data types for time, textual data, numeric data, location, and conceptual
input/output operations.

3 Summary and Further Work

Software entities of a spontaneous network have a need for expressing and acquiring
semantic information about other software entities and resources. In this paper, a con-
ceptual approach of a semantic middleware has been presented for performing the
provision of semantic information. Through the experiences brought by the concep-
tual design and the implementation, the approach has been experienced as feasible in
enhancing connectivity between spontaneously connecting software entities.

Despite of the conceptually high-level information structures within semantic mid-
dleware, its use does not provide any intelligence to any application per se. Instead,
the ability to access the information about the surrounding context and the semantic
relations in it as presented, may provide a better basis for such intelligent information
processing. The task of further reasoning and intelligent operation is in the case of
semantic middleware always left to the applications.

The applicability of the approach is currently limited by the restricted amount of
CAEs. A new CAE has to be produced for acquiring the ability to sense a new ele-
ment from the context. Efficient and simple ways for integrating legacy resources and
applications to operate with the presented concept would provide a change to leverage
their already developed potential, making it a strong topic for further research work.

References

1. T. R. Gruber, ”Toward principles for the design of ontologies used for knowledge sharing”,
Technical Report KSL 93-04, Stanford University, Stanford, CA, August 1993.

2. Foundation of Intelligent Physical Agents (FIPA), http://www.fipa.org
3. S. Helal, “Standards for Service Discovery and Delivery”, IEEE Pervasive Computing,

Vol.1, Iss.2, 2002, pp. 95–100.
4. The Semantic Web Initiative, http://www.w3.org/2001/sw/
5. A. Gomez-Perez, O. Corcho, “Ontology languages for the semantic web”, IEEE Intelligent

Systems. Vol.17, Iss.1, 2002, pp. 54– 60.

	Introduction
	Model and Implementation
	Summary and Further Work
	References

