
Partitioning the Navigational Model:
A Component-Driven Approach

Stephen Kerr and Daniel M. German

Department of Computer Science,
University of Victoria,

{skerr,dmgerman}@cs.uvic.ca

Abstract. This paper proposes using a ComponentApproach to model navigation
in a hypertext application. It proposes Navigational Semantic Units (NSUs), which
are component-oriented units that describe some meaning of navigation from the
user’s perspective. The NSUs are an abstraction of a navigational model and are
the basis for a methodology to design hypermedia applications based on the Model
View Controller Architecture.

1 Introduction

Component-oriented software design and implementation is an established school within
the software engineering community. Partitioning of software applications into compo-
nents is left to the designer who uses experience, domain knowledge, and judgement in
order to define the responsibilities, tasks, and interaction of components within a software
system. Hypermedia applications can benefit from component-oriented techniques to de-
velop, test, and maintain complex systems with greater ease. In models such as OOHDM
and RMM, the hyper-model is generally viewed as a single unit. A large hyper-model
becomes complex as the navigational paths of associative links, structural links, and
navigational design patterns are employed to encompass all possible user navigational
requirements. The relationships between pages must be understood in order for mainte-
nance operations to be successful. Unfortunately, it is difficult to track all the incoming
links to a page. Unless aggressive management is used, the implementation of complex
models diverges from documentation over time. Over time the navigational paths may
change, associative links become invalid, and content become obsolete. Complexity of
model and implementation is an issue of large hyper-media systems. By partitioning a
hyper-model, the partitions can be modelled individually. The internal models are less
complex because the number of inter-related pages (or nodes) is smaller within a partition
than the number of inter-related pages in the whole hyper-model. These characteristics
will make maintenance easier.

2 Partitioning the Hypermedia Navigational Space

A problem with not partitioning the hypermedia model is that the information space of
a hypermedia application in terms of the number of entities, data elements, and data
instances can become very large. A partitioning of the hypermedia system can alleviate

J.M. Cueva Lovelle et al. (Eds.): ICWE 2003, LNCS 2722, pp. 445–448, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

446 S. Kerr and D.M. German

the complexity by endorsing the "divide and conquer" philosophy. If we are to introduce
a partitioning system, it must still be able to provide associative and referential links
between data. The partitioned system will also need to have some navigational structure
that will allow the user to traverse the partitions or the areas of important data within
an application. Most importantly, the partitioning must allow a designer to create and a
coder to implement a large complex system with greater ease than an equivalent system
that does not have a partitioning system. The number of components will depend on the
scope of the application, its overall size, and the number of natural partitions. It is always
possible to partition a given hypermedia application. The partitioning might occur on
a site, server, directory, or domain name level. In many design models the notion of
a view over the hyper-base can be considered as a partition. OOHDM Abstract Data
Views (ADVs), RMM slices or Abstract Design Perspectives (ADP) [1] are groupings,
partitions, or collections of data for various different purposes and they enable a designer
to deal with conceptual design issues in sections smaller than the entire hypermedia
application.

Hypermedia applications are both information presentation applications and func-
tional applications. Many systems employ some sort of dialogue with the user beyond
allowing the user to choose navigational paths. Users can also modify, delete, or append
information. A partitioning system must be able to encompass both the functions and
information presentation needs of the application. The hypermedia space needs to be
partitioned into units that are large enough to be useful but not too large to be unwieldy.
The elements within a partition need to have some commonality. This commonality can
be units of instantiation, units of fault containment, or units of locality.

2.1 Partitioning the Hypermedia Navigational Space Using a Granularity of
Abstraction

Using a granularity of abstraction, the hyper-application can be partitioned according to
the concept of Navigational Semantic Units (NSU). The NSU is centered on the user’s
intention when navigating through a hypermedia application. The NSU can be an entity,
or represent a task, or be a combination of tasks and entities. How to separate intentions
becomes a difficult task. The person who designs the application will have to decide
the extent of each component. Cheeseman [2] partitions components by using use case
models and business concept models, then separates system services from business ser-
vices. The business concept model is refined into a business type model, and this is used
to develop a set of business interfaces. The components are then implemented to support
the interfaces. The “core” business types have independent existence and are character-
ized as business identifiers that have no mandatory associations except to a categorizing
type (i.e. a pointer to another type that is not an aggregation or composition association)
[2]. Hypermedia applications can be similarly partitioned, with an emphasis on using
Navigational Semantic Units as the level of granularity of a component. The NSUs can
be considered as “core” business types. Employing navigational use cases and a Nav-
igational Class Model to initially define the components, similar to the methodology
suggested by Cheeseman, greatly increases the likelihood of the designer identifying
successful partitions. An NSU represents a user’s intention. NSUs themselves, however,
can be viewed as abstracted entities. These entities are not necessarily concepts related

Partitioning the Navigational Model 447

to the underlying domain information structure [3]. The NSU’s are an abstraction of a
combination of the elements of the Business Concept Model and elements of the use
case model, with a further “intuitive” aspect of user intention. The following are the
three main types of components that constitute a hypermedia application:

NSU Components. The majority of the components in a hypermedia application
are expected to be NSU components. These components will consist of a session bean
that contains all the dynamic data to be displayed, the dynamic links, the actions that
constitute the interface, and the views to display the data. The NSU components can
provide associative paths to other parts of the same NSU or to specific information in
other NSUs.

Structural Components. The Structural Components are those that provide navi-
gational paths between the components. The Structural Components render the menus
needed to facilitate the structural navigation. The extensibility of the component frame-
work is dependent upon the navigational structure of the application.

Business Process components. The Business Process Components are those logic
components that reside in the presentation layer. These components may have some sort
of presentation (views), but are generally used by NSUs or Structural Components in
order to affect some aspect of the presentation. Such aspects might be user tracking, user
profiling, user configuration, etc. Business Process Components will typically handle
user login and authorization, and any other business processing needed that falls outside
the NSU components or is applicable to the entire application.

3 A Component-Based Hypermedia Development Model

We propose the following steps for a component-based hypermedia development model:
Step 1. DOM Design–Navigational Model. All the information that is needed in the
hyper-application might not be known, but an initial DOM can be built. The designer
must determine the data and relationships that exist in the underlying system that are
needed in the hypermedia application. The data and relationships can be: 1) a Class
diagram of the underlying application that describes the information that is needed by
the application; 2) Use Case Diagrams that describe all the tasks that encompass the Web
site; and 3) a Model Class Diagram of the DOM that will describe the information that
is to be displayed in the Web site. The DOM contains the entities and their operations
as viewed from a presentation or user perspective.
Step 2: Conceptual Grouping. The designer must determine the conceptual grouping
in the same manner as components are determined. The groupings can consist of Navi-
gational Nodes that are strongly related to each other in terms of the user’s intentions or
functionality. The Nodes are grouped into NSU units. The NSU can contain information
from all the classes in the DOM.
Step 3: Navigation Requirements. Determine navigation needs: 1) Determine struc-
tural navigational needs (navigation between NSUs) and create structural components;
2) determine associative needs (calls to information in NSUs, outgoing links to other
NSUs); and 3) determine functional needs (within components).
Step 4: Component Requirements. Refine the conceptual boundaries of the compo-
nent. This will drive the data and display requirements: 1) determine page templates; 2)

448 S. Kerr and D.M. German

for functional processes, determine the HTML forms (use case diagrams of functional
processes will give insight about the needed pages /steps); 3) determine navigation within
components.
Step 5: Component Interface Design. The interface contains the operation specifica-
tions for what the component needs to display. For each page that is meant to be accessible
by incoming links, assign an action and determine the parameters needed to gather the
information for the view. The interface services calls from within the component and
from other components
Step 6: Session Data Design. Determine what data needs to be available for each view
in terms of data from the underlying application, titles, and labels. Determine calls or
other data retrieval procedures needed to get the required data. Each data element will be
represented in a session bean. This includes data structures to hold the results of searches
and collections of information.
Step 7: Construction of the Presentation. Construct view frameworks (template pages)
to display the data. These would typically be either JSP pages or programs to generate
HTML. A framework can be reused to display different data. The view should contain
no processing of data, only code to drive the display such as “mode” sensitive branching
(i.e. toggle attributes).
Step 8: Displaying the Data. Determine specific display details. A page can be consid-
ered as an observed composite that has a set of perspectives. The data can be displayed
differently for different users depending on their access to data, their preferences, or
even the previously viewed component.

4 Conclusion

This paper proposes a conceptual paradigm for partitioning a hypermedia application.
Using a granularity of abstraction based on Navigational Semantic Units, a designer
can construct a set of hypermedia components that can be individually constructed
and maintained. Three types of components are introduced: the NSU, the Structural
Component, and the Business Process component. Each of these components reside in
the presentation layer. A methodology to construct the components is suggested. The
methodology is similar to a typical component construction methodology. Use case
diagrams, component dependency diagrams, and class diagrams are used as examples
to guide the specification of the components.

References

1. German, D.: Hadez, a Framework for the Specification and Verification of Hypermedia Appli-
cations. PhD thesis, University of Waterloo (2000)

2. Cheeseman, J., Daniels, J.: UML Components: A Simple Process for Specifying Component-
Based Software. Addison-Wesley (2001)

3. Cachero, C., Koch, N., Gomez, J., Pastor, O.: Conceptual navigation analysis: a device and plat-
form independent navigation specification. In: 2nd International Workshop on Web Oriented
Software Technology. (2002)

	Introduction
	Partitioning the Hypermedia Navigational Space
	Partitioning the Hypermedia Navigational Space Using a Granularity of Abstraction

	A Component-Based Hypermedia Development Model
	Conclusion

