
Towards Self-Describing Web Services�

Phillipa Oaks

Centre for Information Technology Innovation - Faculty of Information Technology
Queensland University of Technology

GPO Box 2434, Brisbane, QLD 4001, Australia
{p.oaks}@qut.edu.au

Abstract. Self describing web services is a catchy phrase but it should
mean more than having a description based on XML syntax. In this paper
we take software engineering requirements for software interfaces and
compare them to web service description specifications. The comparison
shows that, at present, less information is associated with a web service
than we expect for ordinary software.

1 Introduction

Web services are a new breed of Web application. They are self-
contained, self-describing, modular applications that can be published,
located, and invoked across the Web [1].

... agents provide service descriptions that tell how they can be used to
accomplish other agents’ goals [2].

... every information dependent resource, including enterprises, infor-
mation services, application services, and devices, need to become aug-
mented with machine processable descriptions to support the finding,
reasoning about (e.g., which service is best), and using (e.g., execut-
ing or manipulating) the resource. The idea is that self-descriptions of
data and other techniques would allow context-understanding programs
to selectively find what users want, or for programs to work on behalf
of humans and organizations to make them more scalable, efficient and
productive [3].

Web services are a promising new technology for machine to machine interac-
tion across application, enterprise and web boundaries. One of the reasons web
services have gained so much interest and support over the last two years is that
there are many existing branches of information technology that can be further
developed within this new paradigm. Software engineering, components, com-
ponent integration, distributed programs, grid computing, middleware, reusable
� This work was supported by the Australian Research Council SPIRT Grant “Self-

describing transactions operating in a large, open, heterogeneous, distributed envi-
ronment” involving QUT, UNSW and GBST Holdings Pty Ltd.

J.M. Cueva Lovelle et al. (Eds.): ICWE 2003, LNCS 2722, pp. 476–485, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: []
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil:
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

Towards Self-Describing Web Services 477

software, databases, knowledge representation, and other areas of computer sci-
ence can contribute to web services.

The many sources of interest and contribution have led to a diversity of
opinions and approaches on what web services can achieve, on what kinds of
conceptual models can be used to describe web services, and also diversity in
the approaches to implementation. Already there are competing standards and
specifications being driven by various interest groups seeking to make a place
for themselves in the web services arena. This leads to standards that either
describe overlapping concerns, or are not integrated with one another, as was
the case for software engineering in the mid 1990’s [4].

There are many consequences of this diversity. There is no clear idea or
agreement about what web services will be. Some see web services as the “dumb
reactive” cousins of “intelligent proactive” agents. In this scenario, web services
merely provide functionality to the agent, which uses and composes services to
achieve its goals. Some describe “user facing” web services, these provide infor-
mational services via web pages (the stock ticker is a classic example). Others see
web services as being able to invoke other (downstream) services themselves in
order to provide composite and complex functionality. These interactive services,
will have various levels of reactive and proactive functionality depending on the
users’ (human, agent, or other service) goals, and the interaction capabilities of
both parties.

In addition, there is no clear idea or agreement about how web services will
be used. At present there appear to be three ways to use web services. The first
services made available1 are rather simple, single function programs that can
be invoked across the web. In the main, they are located by manually searching
a UDDI2 registry, and their invocation and use is pre-programmed by develop-
ers. The second type, are services that automate interactions between business
partners who know each other and can agree on the syntax and semantics of the
services up-front, similar to EDI. The third type, are “semantic web services” [5].
These are on the boundary between services, semantic web and agents. These
web services of the future will provide complex functionality to previously un-
known interaction partners. The exact nature of what they provide, and how
to interact with the service will be contained within “self describing” machine
readable documents [6,7].

The web services architecture is based on a “Publish, Find, Interact” model
[8,9]. This model is insufficient for web services to progress towards automated
service to service interaction. A more complex model that includes description,
advertisement, discovery, evaluation and selection, initiation of dialogue, nego-
tiation, configuration, interaction, and management is required. The first step
is description. Web service descriptions must contain sufficient information to
allow each step to proceed automatically.

As yet, there is no clear definition of what self description really means, but
web services are still software. Therefore we can use the requirements for ordi-

1 http://www.xmethods.com
2 http://www.oasis-open.org/committees/uddi-spec/

478 P. Oaks

nary software interface descriptions as the basis for requirements for web service
interface descriptions. The reason for doing this is to ensure that the description
of web service interfaces is at least as comprehensive as the description provided
for other types of software. Web services operate in a complex environment and
there should be more information about them provided to developers and users
than for ordinary software.

In the next section we outline the requirements for software interfaces de-
scribed in [10]. In section 3 we compare two prominent specifications for web
service description (WSDL and DAML-S), against these requirements. We con-
clude with section 4.

2 Documenting Interfaces

In this section we give an overview of the interface documentation template
presented in [10] and [11] and comment on how the sections apply in the web
services context. These requirements have been refined over many years by the
software engineering community. Each element is necessary to ensure that the
developers implementing the interface, and third parties using the interface, can
fully understand what the interface requires, what it provides and its constraints.

1. Interface identity: The most common means is to give a name to the
interface and version numbers if appropriate.
A unique identity for an interface is particularly important when many im-
plementations of the same interface are expected or if different interfaces to
the same service are provided for different classes of users. The identity can
be used by service advertisements in catalogues and registries to indicate
that the service complies with a particular interface.

2. Resources provided: These are the operations or methods provided in the
interface.
The description of resources should be sufficient to aid the discovery, evalu-
ation and selection of services that meet the users’ needs.
Each resource needs to describe its:
a) Syntax: The signature including its name and the logical datatypes of

arguments.
b) Semantics: A description of what happens when the resource is used

i.e. what is visible to the user, and what are the restrictions on use of the
resource. For example, the semantics describe the assignment of values to
data that the user can access; changes in state, either to this, or another,
element; the events signalled and messages sent by the resource; details
of how other resources will behave differently when this one is used; and
the execution style, whether the operation is atomic, interruptible or
suspendible.
The semantics of the operations is perhaps the most important part of
the description in terms of enabling automated interaction. The seman-
tics will be necessary in most phases from evaluation and selection to
interaction.

Towards Self-Describing Web Services 479

c) Usage restrictions: Similar to pre-conditions, these state the assump-
tions about the environment that must be true, or describe the side
effects of the operation. Exceptions should also be described here, de-
tailing how errors are handled. For example, the number of retries or the
meaning of returned status indicators.

3. Locally defined datatypes: This section describes how to declare vari-
ables, constants and literal values of the datatypes defined and used in the
interface, and the operations, comparisons and conversions that can be per-
formed on instances of those types.
Datatypes in the web context can be viewed as both traditional programming
language constructs and XML documents. In the case of XML documents, a
reference to the document schema or a document template can be provided
to allow creation of required documents or to enable understanding of the
documents supplied by resources.

4. Error handling: The errors that can be raised by the resources on the
interface and error handling behavior.
This information will be necessary during the interaction phase to determine
the cause of unexpected results.

5. Variability provided by the interface: Details of what configuration
is possible, and range of allowable values for each configuration parameter
should be provided. In addition, a description of how configuration affects
the semantics of the interactions.
Web service users will be of many different types, operating in different con-
texts, each with different capabilities. Consequently, web service descriptions
must provide the facility to describe what can be configured and how that
configuration can be achieved. In addition to operation attributes, there are
other aspects of service delivery that could be configurable such as, the in-
teraction mechanism or the security and transaction management protocols.

6. Quality attributes of the interface: Quality attributes include such
things as the level of performance and reliability that the interface provides.
Services may be selected based on their certified conformance to specific
standards, or their ability to provide various quality of service attributes.

7. What each interface element requires: Either, specific named resources
(described as above with syntax, semantics and restrictions), or other pre-
conditions or assumptions about the environment.
The usage restrictions (or non-functional requirements) of the operations
will be used in the evaluation and interaction phases to determine if the
constraints can be satisfied by the user.

8. Rationale: The motivation for the design, the constraints, compromises and
alternatives considered.
This is mainly for the benefit of developers implementing the interface.

9. Usage guide: the protocol of interaction or patterns of use for the entire
interface.
This information will be used during the interaction phase to ensure the cor-
rect order of interaction. This information could also be used to describe how
to initiate a dialogue with the service, how to negotiate with or configure

480 P. Oaks

the service, and how to manage the operation of the service. Alternatively,
the information may be used to select services that provide compatible in-
teraction mechanisms.

The interface requirements described here can be considered the minimum re-
quirements for the interfaces of web services. In the next section we use the
template to determine how much of this information can be expressed using the
current web-service specifications WSDL and DAML-S.

3 Evaluation of Standards in Terms of Interface
Requirements

In this section we evaluate two web service specifications in terms of the interface
documentation template introduced in section 2. The specifications are, the Web
Services Description Language (WSDL) Version 1.2, W3C Working Draft 9 July
20023 and DAML-S 0.7 Draft Release4.

3.1 WSDL Evaluation

WSDL is the primary specification for web service descriptions and it has
achieved a high degree of acceptance. It provides a machine processable lan-
guage, with XML syntax, for the description of web services.

1. Identity: No specific identity attribute is provided by WSDL. When regis-
tered in a UDDI registry as part of a UDDI tModel, a unique identity is
assigned by the registry. The URI of the interface specification can be used
as a unique identifier, however identical copies of the same interface with
different URI’s have to be treated as different resources.

2. Resources provided: A WSDL portType (interface) has a collection of oper-
ations (methods). Each operation has a set of input and output messages.
Each message has one or more parts (parameters). Messages are defined out-
side of the operation, so in theory they are reuseable. Each message part has
a name and a type. Although any type system can be used, XML Schema5

datatypes are preferred.
a) Syntax: Operation signatures are provided in XML syntax according to

the WSDL 1.1 XML Schema specification, for example:

<message name="aNameMessage">
<part name="firstName" type="xsd:string">

</message>

<operation name="printName">

3 http://www.w3.org/TR/2002/WD-wsdl12-20020709/
4 http://www.daml.org/services/daml-s/0.7/
5 http://www.w3.org/XML/Schema

Towards Self-Describing Web Services 481

<input message="aNameMessage"/>
<output message="returnName"/>

</operation>

b) Semantics: WSDL makes no provision for semantics [12].
c) Usage restrictions: Not supported.

3. Local data types: Defined using XML Schema complexTypes. No support
for operations on the defined types.

4. Error handling: Not supported.
5. Variability: Not supported.
6. Quality attributes: Not supported.
7. Required resources: Input messages (as described above) are how required

resources are described in WSDL. There is no support for semantics, usage
restrictions or pre-conditions.

8. Rationale: Not supported, although could be added as documentation.
9. Usage guide: Not supported, although other specifications such as

BPEL4WS6 provide this kind of information for WSDL services.

3.2 DAML-S Evaluation

DAML-S provides several ontologies, based on the DAML ontology language, for
describing the properties and capabilities of web services. DAML-S markup is
intended to facilitate the discovery, execution and interoperation of web services
[13]. DAML-S provides three sub-ontologies, each provides a different view of the
service. The Profile describes three types of information including information
about the organization providing the service, what function the service performs,
and non-functional service characteristics. The Process Model describes how the
service works in terms of its inputs, outputs, preconditions and effects. The
Grounding describes how a service is used and provides a mapping from the
the Profile and Process specifications to specific concrete protocols and message
formats.

In this evaluation we concentrate on the Service Profile, but describe elements
from the Process model and Grounding when they provide more information.
Although the various models provide a good separation of concerns they can
be confusing when they appear to overlap. For example, the Profile describes
parameters that have a name and an unspecified range. These Profile parameters
make references to input and output parameters separately described in the
Process model.

1. Identity: A Profile has a unique serviceName attribute.
2. Resources provided:

a) Syntax: XML syntax is used with the vocabulary from the DAML and
DAML-S specifications, for example:

6 http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

482 P. Oaks

<profileHierarchy:BookSelling
rdf:ID="Profile_Full_Congo_BookBuying_Service">

<!-- reference to the service specification -->
<service:presentedBy
rdf:resource="&congoService;#FullCongoBuyService"/>

<profile:serviceName>
Congo_BookBuying_Agent

</profile:serviceName>

<profile:input rdf:resource="#BookTitle"/>
<profile:output rdf:resource="#ShippingOrder"/>

<!-- specification of quality rating for profile -->
<profile:qualityRating rdf:resource="#Congo-Rating"/>

<!-- Preconditions and effects -->
<profile:precondition rdf:resource="#AcctExists"/>
<profile:effect rdf:resource="#BuyEffectType"/>

</profileHierarchy:BookSelling>

b) Semantics: The Profile provides the means to describe pre-conditions
and effects. Processes can define conditions and condition effects for pa-
rameters. Other elements, such as computedInput and computedOutput,
in the Process model can be used to give explicit semantics for specific
items.
Other aspects of semantics, such as events signalled and how other re-
sources will behave differently are not supported.

c) Usage restrictions: Some support, but the property domainResource, that
describes resources necessary for the task to be executed, has been dep-
recated.

3. Local data types: Most DAML-S objects are defined locally in DAML. Op-
erations on data types are not supported.

4. Error handling: Not supported, although errors could be described in terms
of effects as described in the Process specification.

5. Variability: Not supported.
6. Quality attributes: Various quality attributes can be defined for services,

pre-defined attributes include maxResponseTime and avgResponseTime.
7. Required resources: Input parameters as described above.
8. Rationale: Not supported, although could be added as documentation.
9. Usage guide: The Process Control Model provides various control constructs

including splits, joins, sequence etc. Composite processes can specify con-
straints on the ordering and conditional execution of sub-processes.

Towards Self-Describing Web Services 483

3.3 Summary

Table 1 gives a summary of the results of the evaluation. A “-” indicates no
support, “+/-” indicates some support and “+” indicates reasonable support
for the item.

Table 1. Summary of evaluation results

WSDL DAML-S
1 Identity - +
2 Resources provided
2a Syntax + +
2b Semantics - +/-
2c Restrictions - +/-
3 Local Datatypes +/- +/-
4 Error handling - -
5 Variability - -
6 Quality - +
7 Resources required +/- +/-
8 Rationale - -
9 Usage guide - +

Both specifications rate well on providing the syntax of operation signatures.
Unfortunately this is just about all that WSDL does provide. This means that all
the processes of discovery, selection etc. must be based on operation signatures,
which is clearly inadequate for all but the most simple services. To progress be-
yond manual discovery, selection and pre-programmed interaction, WSDL needs
to be expanded to include the other aspects of interface description, or other
specifications (such as BPEL4WS) covering those aspects must be developed.

DAML-S provides a better interface description for semantics and the usage
guide. The main problem areas are error handling and configuration. Errors are
inevitable, and interfaces must declare what errors are possible and how they are
handled, neither specification provides primitives for this kind of information.
The lack of error handling, which is essential in production systems, may be
a reflection on the immaturity of the specifications or a deliberate attempt to
reduce their complexity. In either case, this issue must be dealt with before
widespread commercial use of web services is possible.

Although there is no support in DAML-S for the definition of operations
on locally defined data types, this is typical of ontology definitions. Ontologies
focus on describing elements in terms of their relationships, rather than on how
instances of the elements can be used.

4 Conclusion

The evaluation of the specifications reveals that web service interfaces created
with WSDL and DAML-S provide much less information than is usually expected

484 P. Oaks

for software interfaces. It is not reasonable to expect services to operate in a
complex environment like the web, and at the same time provide less information
about them than is necessary for ordinary software.

The evaluation also shows that WSDL and DAML-S overlap in some areas,
for example they both describe the syntax of operations very well. Although some
work is being done in DAML-S to align these two specifications [13], further effort
should be directed at making web service interfaces more comprehensive.

In the future when web services engage in automated ad-hoc interaction, they
will also need to describe the domain they operate in and the products they deal
with. They will need to detail their security and authentication policies, trans-
action management procedures, and the interaction mechanisms they support.
Web services will be self describing when they can do all this as well as provide
the basic information discussed in this paper.

References

1. Tidwell, D.: Web services : Education : Tutorials web services – the web’s next
revolution (2000) Available from http://www-105.ibm.com/developerworks/.

2. McDermott, D., Burstein, M.: Overcoming Ontology Mismatches in Transactions
with Self-Describing Service Agents. In: Proceedings of SWWS’ 01 The First
Semantic Web Working Symposium, Stanford University, California, USA (2001)
285–302 Available from: http://www.daml.org/services/daml-s/2001/05/, (20
September 2001).

3. Sheth, A., Meersman, R.: Amicalola Report: Database and Information Sys-
tems Research Challenges and Opportunities in Semantic Web and Enter-
prises (2002) Database and Information Systems Research for Semantic Web
and Enterprises. Invitational Workshop Sponsored by NSF CISE-IIS-IDM, Co-
Sponsored by EU Thematic Network OntoWeb. In cooperation with VP-Research
and LSDIS Lab, University of Georgia. April 3 - 5, Amicalola Falls and
State Park, Georgia. Organizers: Amit Sheth and Robert Meersman. Available
from:http://lsdis.cs.uga.edu/SemNSF, (14 December 2002).

4. Moore, J.W.: Fundamental Principles of Software Reuse (1997) Eighth Annual
Workshop on Institutionalizing Software Reuse (WISR), held at the Ohio State
University. Available from:
http://www.umcs.maine.edu/%7Eftp/wisr/wisr8/wisr8.html, (11 January
2003).

5. Bussler, C., Fensel, D., Payne, T., Sycara, K.: Tutorial (T3): Semantic Web Ser-
vices (2002) More information available at:
http://www.daml.ri.cmu.edu/tutorial/iswc-t3.html, (15 October 2002).

6. Fensel, D., Bussler, C.: The Web Service Modeling Framework WSMF (2002)
to appear in Electronic Commerce Research and Applications. Available from:
http://www.cs.vu.nl/˜dieter/wese/wsmf.paper.pdf, (30 September 2002).

7. Sollazzo, T., Handschuh, S., Staab, S., Frank, M.: Semantic Web Service Architec-
ture - Evolving Web Service Standards toward the Semantic Web. In: Proc. of the
15th International FLAIRS Conference, Pensacola, Florida, AAAI Press (2002)
Available from: http://www.citeseer.nj.nec.com/sollazzo02semantic.html,
(24 September 2002).

http://www-105.ibm.com/developerworks/
http://www.daml.org/services/daml-s/2001/05/
http://lsdis.cs.uga.edu/SemNSF
http://www.daml.ri.cmu.edu/tutorial/iswc-t3.html
http://www.cs.vu.nl/~dieter/wese/wsmf.paper.pdf
http://www.citeseer.nj.nec.com/sollazzo02semantic.html

Towards Self-Describing Web Services 485

8. Hugo Haas (Activity Lead): Web Services Activity Statement (2002)
http://www.w.org/2002/ws, (12 March 2002).

9. Bussler, C., Fensel, D., Maedche, A.: A Conceptual Architecture for Semantic Web
Enabled Web Services. SIGMOD Record, Special Section on Semantic Web and
Data Management 31 (2002)

10. Clements, P., Bachmann, F., Ross, L., Garlan, D., Ivers, J., Little, R., Nord, R.,
Stafford, J.: Documenting Software Architectures: Views and Beyond. Addison-
Wesley, Boston, USA (2003) ISBN 0-201-70372-6.

11. Bachmann, F., Bass, L., Clements, P., Garlan, D., Ivers, J., Little, R., Nord, R.,
Stafford, J.: Documenting Software Architecture: Documenting Interfaces. Techni-
cal Note CMU/SEI-2002-TN-015, Carnegie Mellon Software Engineering Institute,
Pittsburgh, PA (2002)

12. Booth, D.: Semantics and WSDL (2002) Available from:
http://www.w3.org/2002/09/wsdl-semantics-dbooth/semantics_clean.htm,
(12 December 2002).

13. Martin, D., Burstein, M., Lassila, O., Paolucci, M., McIlraith, S.: Describing Web
Services using DAML-S and WSDL (2002) DAML-S Coalition working document;
August 2002. Available from:
http://www.daml.org/services/daml-s/0.7/daml-s-wsdl.html, (19 January
2003).

http://www.w.org/2002/ws
http://www.w3.org/2002/09/wsdl-semantics-dbooth/semantics_clean.htm
http://www.daml.org/services/daml-s/0.7/daml-s-wsdl.html

	Introduction
	Documenting Interfaces
	Evaluation of Standards in Terms of Interface Requirements
	WSDL Evaluation
	DAML-S Evaluation
	Summary

	Conclusion

