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Abstract. We revisit the Double Digest problem, which occurs in se-
quencing of large DNA strings and consists of reconstructing the relative
positions of cut sites from two different enzymes: we first show that Dou-
ble Digest is strongly NP–complete, improving upon previous results
that only showed weak NP–completeness. Even the (experimentally more
meaningful) variation in which we disallow coincident cut sites turns out
to be strongly NP–complete. In a second part, we model errors in data as
they occur in real–life experiments: we propose several optimization vari-
ations of Double Digest that model partial cleavage errors. We then
show APX–completeness for most of these variations. In a third part, we
investigate these variations with the additional restriction that coninci-
dent cut sites are disallowed, and we show that it is NP–hard to even find
feasible solutions in this case, thus making it impossible to guarantee any
approximation ratio at all.

1 Introduction

Double digest experiments are a standard approach to construct physical maps
of DNA. Given a large DNA molecule, which for our purposes is an unknown
string over the alphabet {A, C, G, T}, the objective is to find the locations of
markers, i.e., occurrences of short substrings such as GAATTC, on the DNA.
Physical maps are required e.g. in DNA sequencing in order to determine the
sequence of nucleotides (A,C,G, and T ) of large DNA molecules, since current
sequencing methods allow only to sequence DNA fragments with tens of thou-
sands of nucleotides, while a DNA molecule can have up to 108 nucleotides.

In double digest experiments, two enzymes are used to cleave the DNA
molecule. An enzyme is a protein that cuts a DNA molecule at specific pat-
terns, the restriction sites. For instance, the enzyme EcoRI cuts at occurrences
of the pattern GAATTC. Under appropriate experimental conditions, an enzyme
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cleaves at all restriction sites in the DNA. This process is called (full) digestion.
Double digest experiments work in three stages: First, clones (copies) of the un-
known DNA string are digested by an enzyme A; then a second set of clones is
digested by another enzyme B; and finally a third set of clones is digested by a
mix of both enzymes A and B, which we will refer to as C. This results in three
multisets of DNA fragments. The lengths of these fragments (i.e., their number
of nucleotides) are then measured for each multiset by using gel electrophoresis,
a standard technique in molecular biology. This leaves us with three multisets
of distances (the number of nucleotides) between all adjacent restriction sites,
and the objective is to reconstruct the original ordering of the fragments in the
DNA molecule, which is the Double Digest problem.

More formally, the Double Digest problem can be defined as follows, where
sum(S) denotes the sum of the elements in a set S, and dist(P ) is the set of all
distances between two neighboring points in a set P of points on a line:

Definition 1 (Double Digest). Given three multisets A,B and C of positive
integers with sum(A) = sum(B) = sum(C), are there three sets PA, PB and PC

of points on a line, each starting in 0, such that dist(PA) = A, dist(PB) = B
and dist(PC) = C, and such that PA ∪ PB = PC?

For example, given multisets A = {5, 15, 30}, B = {2, 12, 12, 24} and
C = {2, 5, 6, 6, 7, 24} as an instance of Double Digest, then PA =
{0, 5, 20, 50}, PB = {12, 14, 26, 50} and PC = {5, 12, 14, 20, 26, 50} is a feasible
solution (there may exist more solutions).

Due to its importance in molecular biology, the Double Digest problem has
been the subject of intense research since the first successful restriction site map-
pings in the early 1970’s [1,2]. The Double Digest problem is NP–complete [3],
and several approaches including exponential algorithms, heuristics, additional
experiments or computer–assisted interactive strategies have been proposed (and
implemented) in order to tackle the problem [4,5,6,7,8]. The number of feasible
maps for a Double Digest instance can be characterized by using alternat-
ing Eulerian paths in appropriate graph classes and can be exponential in the
number of fragments [3,9,10,11]. For a survey, see [12] and [13].

The double digest experiment is usually carried out with two enzymes that
cut at different restriction sites. A majority of all possible enzyme pairings of the
more than 3000 known enzymes are pairs with such disjoint cutting behavior.
On the other hand, some results in the literature rely on enzymes that cut at
the same site in some cases (coincidences) [10]. In particular, NP–hardness of the
Double Digest problem has so far only been shown using enzymes that allow
for coincidences [3,12,14]. Indeed, such enzyme pairs exist, for example enzymes
HaeIII and BalI. However, having two enzymes that are guaranteed to always
cut at disjoint sites seems more natural and might lead – at least intuitively – to
easier reconstruction problems. For example, such instances always fulfill |C| =
|A|+|B|−1 (where |S| denotes the cardinality of set S). To reflect these different
types of experiments, we define the Disjoint Double Digest problem, which
is equivalent to the Double Digest problem with the additional requirement
that the two enzymes may never cut at the same site, or, equivalently, that PA
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and PB are disjoint except for the first point (which is 0) and the last point
(which is sum(A)).

The NP–hardness results for Double Digest in the literature [3,12,14] rely
on reductions from weakly NP–complete problems (namely Partition). As a
first set of results in this paper, we prove in Section 2 that both Double Digest
and Disjoint Double Digest are actually NP–complete in the strong sense
by proposing reductions from 3–Partition.

In a second part of the paper, we model reality more closely by taking into
account that double digest data usually contains errors. A partial cleavage error
occurs when an enzyme fails to cut at a restriction site where it is supposed to
cut; then one large fragment occurs in the data instead of the two (or even more)
smaller fragments. Other error types, such as fragment length errors, missing
small fragments, and doublets occur as well (see [5,7,6,14]), but we will focus on
partial cleavage errors. They can occur for many reasons, e.g. improper reaction
conditions or inaccurate DNA concentration (see e.g. [15] for a list of possible
causes). A partial cleavage error occurs e.g. when an enzyme fails to cut at
a site where it is supposed to cut in the first (or second) stage of the double
digest experiment, but then does cut at this site in the third phase (where it
is mixed with the other enzyme). Such an error usually will make it impossible
to find a solution for the corresponding Double Digest instance. In fact, only
PA ∪ PB ⊆ PC can be guaranteed for any solution. Vice–versa, if an enzyme
cuts only in the first (or second) phase, but fails to cut in the third phase, then
we can only guarantee PC ⊆ PA ∪ PB .

In the presence of errors, usually the data is such that no exact solutions can
be expected. Therefore, optimization criteria are necessary in order to compare
and gauge solutions. We will define optimization variations of the Double Di-
gest problem taking into account different optimization criteria; our objective
will be to find good approximation algorithms. An optimal solution for a prob-
lem instance with no errors will be a solution for the Double Digest problem
itself.1 Thus, the optimization problem cannot be computationally easier than
the original Double Digest problem, and (strong) NP–hardness results for
Double Digest carry over to the optimization problem.

A straight-forward optimization criterion for Double Digest is to minimize
the absolute number of partial cleavage errors in a solution, i.e., to minimize
e(PA, PB , PC) := |(PA ∪ PB) − PC | + |PC − (PA ∪ PB)| (recall that |S| is
the cardinality of set S). Here, points in (PA ∪ PB)− PC correspond to errors
where enzyme A or B failed to cut in the third phase of the experiment, and
points in PC − (PA ∪ PB) correspond to errors where either enzyme A or B
failed to cut in the first resp. second phase. Unfortunately, the corresponding
optimization problem Minimum Absolute Error Double Digest in which
we try to find point sets PA, PB and PC such that e(PA, PB , PC) is minimum
cannot be approximated within any finite approximation ratio (unless P = NP),
as a polynomial-time algorithm guaranteeing a finite approximation ratio could
be used to solve the NP–complete Double Digest problem in polynomial-time.

1 Of course, this only holds if the optimization criterion is well–designed.
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We obtain a more sensible optimization criterion as follows: If we add |A|+
|B|+ |C| as an offset to the number of errors, we obtain an optimization criterion
which turns the absolute number of errors into a measure relative to the input
size. The corresponding optimization problem is defined as follows:

Definition 2 (Minimum Relative Error Double Digest). Given three
multisets A,B and C of positive integers with sum(A) = sum(B) = sum(C),
find three sets PA, PB and PC of points on a line, each starting in 0, such that
dist(PA) = A, dist(PB) = B and dist(PC) = C, and such that r(PA, PB , PC) :=
|A|+ |B|+ |C|+ e(PA, PB , PC) is minimum.

Instead of counting the number of errors, measuring the total size of a so-
lution is an optimization criterion that seems very natural, even if it does not
model cleavage errors exactly. In this case, we want to minimize the total number
of points in a solution, i.e., we minimize |PA ∪ PB ∪ PC |. This yields the Mini-
mum Point Double Digest problem, which is defined anologous to Minimum
Relative Error Double Digest except for the minimization criterion.

We show in Section 3 thatMinimum Relative Error Double Digest and
Minimum Point Double Digest are APX–hard (i.e., there exists a constant
ε > 0 such that no polynomial–time algorithm can guarantee to find approxi-
mate solutions that are at most a factor 1 + ε off the optimum solution, unless
P = NP) by proposing gap–preserving reductions2 from Maximum Tripar-
tite Matching, using Maximum 4–Partition as an intermediary problem.
We also analyze a straight–forward approximation algorithm that works for both
problems and that achieves an approximation ratio of 2 for Minimum Relative
Error Double Digest and a ratio of 3 for Minimum Point Double Digest.

For each optimization problem, a variation can be defined where the enzymes
may only cut at disjoint restriction sites (analogous to Disjoint Double Di-
gest). The corresponding optimization problems are called Minimum Disjoint
Relative Error Double Digest and Minimum Disjoint Point Double
Digest. In Section 4, we show that – rather surprisingly – they are even harder
to solve than the unrestricted problems: it is NP–hard to even find feasible solu-
tions. We establish this result by showing that the problem of disjointly arrang-
ing two given sets of numbers is already NP–hard. This arrangement problem –
which we call Disjoint Ordering – is a subproblem that every algorithm for
any Disjoint Double Digest variations has to be able to solve; thus, no finite
approximation ratio can be achieved for our optimization variations of Disjoint
Double Digest (unless P = NP). Moreover, the same result would also hold
for other optimization criteria, since the proof depends only on the disjointness
requirement.

In Section 5, we conclude with directions for future research. Due to space
limitations, we only give proof sketches in this extended abstract for most of our
results; detailed proofs will be given in the full paper.

2 For an introduction to gap–preserving reductions, see [16].
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2 Strong NP–Completeness of (Disjoint) Double Digest

In this section, we show strong NP–completeness for the decision problems Dou-
ble Digest and Disjoint Double Digest. We present reductions from 3–
Partition, which is defined as follows: Given 3n integers q1, . . . , q3n and integer
h with

∑3n
i=1 qi = nh and h

4 < qi <
h
2 for all 1 ≤ i ≤ 3n, are there n disjoint

triples of qi’s such that each triple sums up to h? The 3–Partition problem
is NP–complete in the strong sense [17]. First, we extend the NP–completeness
result from [3] for the Double Digest problem.

Lemma 3. Double Digest is strongly NP–complete.

Proof. We reduce 3–Partition to Double Digest as follows: Given an in-
stance q1, . . . , q3n and h of 3–Partition, let ai = ci = qi for 1 ≤ i ≤ 3n, and let
bj = h for 1 ≤ j ≤ n. Then the three (multi-)sets of ai’s, bj ’s and ci’s build an
instance of Double Digest. If there is a solution for the 3–Partition instance,
then there exist n disjoint triples of qi’s (and ai’s as well) such that each triple
sums up to h. Starting from 0, we arrange the distances ai on a line such that
each three ai’s that belong to the same triple are adjacent. The same ordering
is used for the ci’s. This yields a solution for the Double Digest instance.
On the other hand, if there is a solution for the Double Digest instance, say
PA, PB and PC , then there exist n subsets of ci’s such that each subset sums up
to h, since each point in PB must occur in PC as well, and all adjacent points
in PB have distance h. These n subsets yield a solution for the 3–Partition
instance. �	

Lemma 4. Disjoint Double Digest is strongly NP–complete.

Proof (sketch). We show strong NP–hardness by reducing 3–Partition to Dis-
joint Double Digest. Given an instance of 3–Partition, let s =

∑3n
i=1 qi and

t = (n+ 1) · s. Let ai = qi for 1 ≤ i ≤ 3n, âj = 2t for 1 ≤ j ≤ n− 1, bj = h+ 2t
for 1 ≤ j ≤ n − 2, b̂k = h + t for 1 ≤ k ≤ 2, ci = qi for 1 ≤ i ≤ 3n, and ĉj = t
for 1 ≤ j ≤ 2n − 2. Let A consist of the ai’s and âj ’s, and B and C be defined
accordingly. Then A,B and C are our instance of Disjoint Double Digest.

Given a solution for the 3–Partition instance, we assume w.l.o.g. that the
qi’s (and thus the ai’s and ci’s) are ordered such that the three elements of
each triple are adjacent. The arrangement shown in the figure below yields a
solution for the Disjoint Double Digest instance. For the opposite direction,
let PA, PB and PC be a solution for the Disjoint Double Digest instance.
Each two adjacent points in PB differ by h (plus t or 2t), and so do n+ 1 points
in PC . Hence, there must be n subsets of ci’s that each sum up to h, yielding a
solution for the 3–Partition instance.



524 M. Cieliebak, S. Eidenbenz, and G.J. Woeginger

a1a2a3 a4a5a6 a7 a8 a9 a10 a11 a12â1 â2 â3

b1 b2b̂1 b̂2

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12ĉ1 ĉ2 ĉ3 ĉ4 ĉ5 ĉ6

A

B

C

h �	

3 Approximability of Minimum Relative Error Double
Digest and Minimum Point Double Digest

In this section, we show that Minimum Relative Error Double Digest
and Minimum Point Double Digest are both APX–hard, and we propose a
straight–forward approximation algorithm that achieves an approximation ratio
of 3 respectively 2 for the two problems. For the proof of APX-hardness, we
introduce a maximization variation of the well–known 4–Partition problem
[17] which is defined as follows:

Definition 5 (Maximum 4–Partition). Given an integer h and a multiset
Q = {q1, . . . , q4n} of 4n integers with

∑4n
i=1 qi = nh and h

5 < qi <
h
3 , find a

maximum number of disjoint subsets S1, . . . , Sm ⊆ Q such that the elements in
each set Si sum up to h.

While Maximum 4–Partition may be an interesting problem per se, we
are mainly interested in it as an intermediary problem on our way to proving
APX–hardness for our optimization variations of Double Digest.

Lemma 6. Maximum 4–Partition is APX–hard.

Proof (sketch). The lemma follows from the original reduction from Maximum
Tripartite Matching to 4–Partition given in [17, pages 97–99], if analyzed
as a gap-preserving reduction. �	
Lemma 7. Minimum Point Double Digest is APX–hard.

Proof (sketch). We propose a gap–preserving reduction from Maximum 4–
Partition to Minimum Point Double Digest. For a given Maximum 4–
Partition instance I, consisting of Q and h, we construct an instance I ′ of
Minimum Relative Error Double Digest as follows: Let A = C = Q, and
let B contain n times the element h.

Let OPT denote the size of an optimum solution for I, and let OPT ′ denote
the size of an optimum solution for I ′. Then we have: if OPT ≥ n, then OPT ′ ≤
4n + 1, and if OPT < (1 − ε)n for a small constant ε > 0, then OPT ′ >
(4 + ε

2 )n + 1. These two implications describe the reduction as gap-preserving
and thus establish the result. �	
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Lemma 8. Minimum Relative Error Double Digest is APX–hard.

Proof (sketch). The proof uses the same reduction as in Lemma 7 with slightly
modified implications. �	

A straight–forward approximation algorithm for our two problems simply
arranges all distances from A,B and C on a line in a random fashion, starting
at 0. If we analyze this algorithm as an approximation algorithm for Minimum
Point Double Digest, we see that this will result in a solution with at most
|A|+ |B|+ |C|−1 points; on the other hand, an optimum solution will always use
at least max(|A|, |B|, |C|) + 1 points. Thus, this trivial approximation algorithm
achieves an approximation ratio of 3 for Minimum Point Double Digest.
The same algorithm yields an approximation ratio of 2 for Minimum Relative
Error Double Digest.

4 NP–hardness of Finding Feasible Solutions for
Optimization Variations of Disjoint Double Digest

In this section, we show for all Double Digest optimization variations in which
we disallow coincidences that there cannot be a polynomial–time approximation
algorithm with finite approximation ratio, unless P = NP. We achieve this by
showing that even finding feasible solutions for these problems is NP–hard. To
this end, we introduce the decision problem Disjoint Ordering which is de-
fined as follows:

Definition 9 (Disjoint Ordering). Given two multisets A and B of integers
with sum(A) = sum(B), find two sets PA and PB of points on a line, starting in
0, such that dist(PA) = A, dist(PB) = B, and such that PA and PB are disjoint
except for the first and the last point.

Lemma 10. Disjoint Ordering is NP–complete.

Proof (sketch). Obviously, Disjoint Ordering is in NP. To show NP-hardness,
we reduce 3–Partition to it. Given an instance q1, . . . , q3n and h of 3–
Partition, we construct an instance of Disjoint Ordering as follows. Let
ai = qi for 1 ≤ i ≤ 3n, âj = h for 1 ≤ j ≤ n + 1, bi = h + 2 for 1 ≤ i ≤ n,
and b̂j = 1 for 1 ≤ j ≤ (n + 1) · h − 2n. Let A consist of the ai’s and âj ’s,
and let B consist of the bi’s and b̂j ’s. Then sum(A) = sum(B) = (2n + 1) · h.
In the full proof, we show that the following arrangement makes the reduction
work: for A, blocks of three ai’s are separated by one âj , and for B, each two
bi’s are separated by a block of h − 2 distances b̂j (with the remaining b̂j ’s at
the beginning and end). �	

We reduce Disjoint Ordering to Minimum Disjoint Relative Error
Double Digest as follows: Let A and B be an instance of Disjoint Ordering.
We ”construct” an instance of Minimum Disjoint Relative Error Double
Digest by simply letting sets A and B be the same sets, and set C be the
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empty set. If an approximation algorithm for Minimum Disjoint Relative
Error Double Digest finds a feasible solution for this instance, this yields
immediately a solution for the Disjoint Ordering instance, since any solution
feasible solution for Minimum Disjoint Relative Error Double Digest
must arrange the elements from A and B in a disjoint fashion. The same ar-
gument applies for Minimum Disjoint Point Double Digest, and for any
other (reasonable) optimization variation of Disjoint Double Digest since
the reduction is totally independent of the optimization criterion. Thus, we have:

Lemma 11. No polynomial–time approximation algorithm can achieve a finite
approximation ratio for Minimum Disjoint Relative Error Double Di-
gest, Minimum Disjoint Point Double Digest, or any other (reasonable)
optimization variation of Disjoint Double Digest, unless P = NP.

5 Conclusion

In this paper, we showed that Double Digest and Disjoint Double Di-
gest are strongly NP–complete; in a second part, we defined several optimiza-
tion variations of Double Digest that model partial cleavage errors, proved
APX–hardness for Minimum Relative Error Double Digest and Mini-
mum Point Double Digest, and analyzed straight–forward approximation
algorithms for these problems that achieve constant approximation ratios. In a
last set of results, we showed for Double Digest optimization variations where
conincidences are not allowed that even finding feasible solutions is NP–hard.

While our approximability results are tight for all Disjoint Double Digest
variations, our results leave considerable gaps regarding the exact approximabil-
ity threshold for Minimum Relative Error Double Digest and Minimum
Point Double Digest, which present challenges for future research. In a dif-
ferent direction of future research, optimization variations of Double Digest
that model the three other error types (i.e., fragment length, missing small frag-
ments, and doublets) or even combinations of different error types should be
defined and studied. On a meta–level of arguing, it seems unlikely that an op-
timization variation that models partial cleavage errors and some of the other
error types could be any easier than the problems that model only partial cleav-
age errors, but there is a possibility that some error types might offset each other
in a cleverly defined optimization problem.
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