Skip to main content

Passive Complete Orthonomic Systems of PDEs and Involutive Bases of Polynomial Modules

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2630))

Abstract

The objective of this article is to enlighten the relationship between the two classical theories of passive complete orthonomic systems of PDEs on the one hand and Gröbner bases of finitely generated modules over polynomial rings on the other hand. The link between both types of canonical forms are the involutive bases which are both, a particular type of Gröbner bases which carry some additional structure and a natural translation of the notion of passive complete orthonomic systems of linear PDEs with constant coefficients into the language of polynomial modules.

We will point out some desirable applications which a “good” notion of involutive bases could provide. Unfortunately, these desires turn out to collide and we will discuss the problem of finding a reasonable compromise.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • W. W. Adams, P. Loustaunau. An Introduction to Gröbner Bases, Graduate Studies in Mathematics, Vol. 3, AMS Press, Providence, (1994).

    Google Scholar 

  • J. Apel. The Theory of Involutive Divisions and an Application to Hilbert Function Computations. J. Symb. Comp. 25, 683–704 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  • J. Apel. Computational Ideal Theory in Finitely Generated Extension Rings. Theoretical Computer Science, 244/1–2, 1–33 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  • J. Apel. On a Conjecture of R. P. Stanley; Part I — Monomial Ideals. MSRI Preprint 2001-004 (2001).

    Google Scholar 

  • J. Apel. On a Conjecture of R. P. Stanley; Part II — Quotients modulo Monomial Ideals. MSRI Preprint 2001-009 (2001).

    Google Scholar 

  • J. Apel. Stanley Decompositions and Riquier Bases. Talk presented at the Conference on Applications of Computer Algebra (ACA’01), Albuquerque (2001).

    Google Scholar 

  • J. Apel, R. Hemmecke. Detecting Unnecessary Reductions in an Involutive Basis Computation. Work in Progress.

    Google Scholar 

  • J. Apel, W. Laßner. An Extension of Buchberger’s Algorithm and Calculations in Enveloping Fields of Lie Algebras. J. Symb. Comp. 6, 361–370 (1988).

    Article  MATH  Google Scholar 

  • D. Bayer, M. Stillman. A Criterion for Detecting m-Regularity. Invent. math. 87, 1–11 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  • T. Becker, V. Weispfenning, in cooperation with H. Kredel. Gröbner Bases, A Computational Approach to Commutative Algebra. Springer, New York, Berlin, Heidelberg, (1993).

    MATH  Google Scholar 

  • B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph.D. Thesis, University of Innsbruck, (1965).

    Google Scholar 

  • B. Buchberger. An Algorithmic Method in Polynomial Ideal Theory, Chapter 6 in: N.K. Bose, ed., Recent Trends in Multidimensional System Theory, D.Reidel Publ. Comp., (1985).

    Google Scholar 

  • D. Eisenbud. Commutative Algebra. With a view toward algebraic geometry. Graduate Texts in Mathematics, 150. Springer-Verlag, New York, (1995).

    Google Scholar 

  • V. P. Gerdt, Yu. A. Blinkov. Involutive Bases of Polynomial Ideals. Mathematics and Computers in Simulation 45, 519–542 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  • V. P. Gerdt, Yu. A. Blinkov, D. A. Yanovich. Fast Computation of Polynomial Janet Bases. Talk presented at the Conference on Applications of Computer Algebra (ACA’01), Albuquerque (2001).

    Google Scholar 

  • Giovini, A., Mora, T., Niesi, G., Robbiano, L., Traverso, C. (1991). “One sugar cube, please,” or Selection Strategies in the Buchberger Algorithm. In: Watt, S.M. (ed.), Proc. ISSAC’91, ACM Press, New York, pp. 49–54.

    Google Scholar 

  • R. Hemmecke. Dynamical Aspects of Involutive Bases Computations. SNSC’01, Linz (2001), This Volume.

    Google Scholar 

  • M. Janet. Lecons sur les systèmes d’equations aux dérivées partielles. Gauthier-Villars, Paris (1929).

    MATH  Google Scholar 

  • D. Mall, On the Relation Between Gröbner and Pommaret Bases. AAECC 9/2, 117–123 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  • H. M. Möller, T. Mora. New Constructive Methods in Classical Ideal Theory, J. Algebra 100, 138–178, (1986).

    Article  MATH  MathSciNet  Google Scholar 

  • J. F. Pommaret. Systems of Partial Differential Equations and Lie Pseudogroups. Gordan and Breach, New York (1978).

    MATH  Google Scholar 

  • C. H. Riquier. Les systémes d’equations aux dérivées partielles. Gauthier-Villars, Paris (1910).

    Google Scholar 

  • R. P. Stanley. Linear Diophantine Equations and Local Cohomology. Invent. math. 68, 175–193 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  • J. M. Thomas. Riquier’s Existence Theorems. Annals of Mathematics 30/2, 285–310 (1929).

    Google Scholar 

  • J. M. Thomas. Differential Systems. American Mathematical Society, New York, (1937).

    Google Scholar 

  • A. R. Tresse. Sur les invariants différentials des groupes continus de transformations. Acta Mathematica 18, 1–8 (1894).

    Article  MathSciNet  Google Scholar 

  • A. Yu. Zharkov, Yu. A. Blinkov. Involution Approach to Solving Systems of Algebraic Equations. Proc. IMACS’93, 11–16 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Apel, J. (2003). Passive Complete Orthonomic Systems of PDEs and Involutive Bases of Polynomial Modules. In: Winkler, F., Langer, U. (eds) Symbolic and Numerical Scientific Computation. SNSC 2001. Lecture Notes in Computer Science, vol 2630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45084-X_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-45084-X_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40554-2

  • Online ISBN: 978-3-540-45084-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics