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Abstract. OpenJIT is an open-ended, re
ective JIT compiler framework for Java

being researched and developed in a joint project by Tokyo Inst. Tech. and Fujitsu

Ltd. Although in general self-descriptive systems have been studied in various contexts

such as re
ection and interpreter/compiler bootstrapping, OpenJIT is a �rst system

we know to date that o�ers a stable, full-
edged Java JIT compiler that plugs into

existing monolithic JVMs, and o�er competitive performance to JITs typically written

in C or C++. This is in contrast to previous work where compilation did not occur

in the execution phase, customized VMs being developed ground-up, performance not

competing with existing optimizing JIT compilers, and/or only a subset of the Java

language being supported. The main contributions of this paper are, 1) we propose an

architecture for a re
ective JIT compiler on a monolithic VM, and identify the technical

challenges as well as the techniques employed, 2) We de�ne an API that adds to the

existing JIT compiler APIs in \classic" JVM to allow re
ective JITs to be constructed,

3) We show detailed benchmarks of run-time behavior of OpenJIT to demonstrate that,

while being competitive with existing JITs the time- and space-overheads of compiler

metaobjects that exist in the heap are small and manageable, and 4) we demonstrate

how re
ective JITs could be useful class- or application speci�c customization and

optimization by providing an important re
ective \hook" into a Java system. Being

an object-oriented compiler framework, OpenJIT can be con�gured to be small and

portable or fully-
edged optimizing compiler framework in the spirit of SUIF. It is fully

JCK compliant, and runs all large Java applications we have tested to date including

HotJava. We are currently distributing OpenJIT for free to foster further research into

advanced compiler optimization, compile-time re
ection, advanced run-time support

for languages, as well as other areas such as embedded computing, metacomputing,

and ubiquitous computing.

1 Introduction

Programming Languages with high-degree of portability, such as Java, typically employ

portable intermediate program representations such as bytecodes, and utilize Just-In-Time

compilers (JITs), which compile (parts of) programs into native code at runtime. However,

all the Java JITs today as well as those for other languages such as Lisp, Smalltalk, and Self,

only largely focuses on standard platforms such as Workstations and PCs, merely stress opti-

mizing for speeding up single-threaded execution of general programs, usually at the expense

of memory for space-time tradeo�. This is not appropriate, for example, for embedded sys-

tems where the tradeo� should be shifted more to memory rather than speed. Moreover, we

claim that JITs could be utilized and exploited more opportunely in the following situations:

{ Platform-speci�c optimizations: Execution platforms could be from embedded sys-

tems and hand-held devices all the way up to large servers and massive parallel processors

(MPPs). There, requirements for optimizations di�er considerably, not only for space-time
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tradeo�s, but also for particular class of applications that the platform is targeted to ex-

ecute. JITs could be made to adapt to di�erent platforms if it could be customized in a


exible way.

{ Platform-speci�c compilations: On related terms, some platforms require assis-

tance of compilers to generate platform- speci�c codes for execution. For example, DSM

(Distributed-Shared Memory) systems and persistent object systems require speci�c com-

pilations to emit code to detect remote or persistent reference operations. Thus, if one

were to implement such systems on Java, one not only needs to modify the JVM, but

also the JIT compiler. We note that, as far as we know, representative work on Java

DSM (cJVM[AFT99] by IBM) and persistent objects (PJama[ADJ+96] at University of

Glasgow) lack JIT compiler support for this very reason.

{ Application-speci�c optimizations: One could be more opportunistic by performing

optimizations that are speci�c to a particular application or a data set. This includes

techniques such as selection of compilation strategies, runtime partial evaluation, as well

as application-speci�c idiom recognition. By utilizing application-speci�c as well as run-

time information, the compiled code could be made to execute substantially faster, or

with less space, etc. compared to traditional, generalized optimizations. Although such

techniques have been proposed in the past, it could become a generally-applied scheme

and also an exciting research area if e�cient and easily customizable JITs were available.

{ Language-extending compilations: Some work stresses on extending Java for adding

new language features and abstractions. Such extensions could be implemented as source-

level or byte-code level transformations, but some low-level implementations are very

di�cult or ine�cient to support with such higher-level transformations in Java. The

abovementioned DSM is a good example: Some DSMs permit users to add control direc-

tives or storage classi�ers at a program level to control the memory coherency protocols,

and thus such a change must be done at JVM and native code level. One could facilitate

this by encoding such extensions in bytecodes or class�le attributes, and customizing the

JIT compilers accordingly to understand such extensions.

{ Environment- or Usage-speci�c compilations and optimizations: Other environ-

mental or usage factors could be considered during compilation, such as adding pro�ling

code for performance instrumentation, debugging etc. 1

Moreover, with Java, we would like these customizations to occur within an easy frame-

work of portable, security-checked code downloaded across the network. That is to say, just as

applets and libraries are downloadable on-the-
y, we would like the JIT compiler customiza-

tion to be downloaded on-the-
y as well, depending on the speci�c platform, application,

and environment. For example, if a user wants to instrument his code, he will want to down-

load the (trusted) instrumentation component from the network on-the-
y to customize the

generated code accordingly.

Unfortunately, most JITs today, especially those for Java, are architected to be closed

and monolithic, and do not facilitate interfaces, frameworks, nor patterns as a means of cus-

tomization. Moreover, JIT compilers are usually written in C or C++, and live in a completely

separate scope from normal Java programs, without enjoying any of the language/systems

bene�ts that Java provides, such as ease of programming and debugging, code safety, porta-

bility and mobility, etc. In other words, current Java JIT compilers are \black boxes", being

in a sense against the principle of modular, open-ended, portable design ideals that Java itself

represents.

In order to resolve such a situation, the collaborative group between Tokyo Institute of

Technology and Fujitsu Limited have been working on a project OpenJIT[MOS+98] for almost

1 In fact we do exactly that in the benchmarking we show later in Section 5, which for the �rst time

characterizes the behavior of a self-descriptive JIT compiler.
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the past two years. OpenJIT itself is a \re
ective" Just-In-Time open compiler framework for

Java written almost entirely in Java itself, and plugs into the standard Sun JDK 1.1.x and

1.2 JVMs. All compiler objects coexist in the same heap space as the application objects,

and are subject to execution by the same Java machinery, including having to be compiled

by itself, and subject to static and dynamic customizations. At the same time, it is a fully-


edged, JCK (Java Compatibility Kit) compliant JIT compiler, able to run production Java

code. In fact, as far as we know, it is the ONLY Java JIT compiler whose source code is

available in public, and is JCK compliant other than that of Sun's. And, as the benchmarks

will show, although being constrained by the limitations of the \classic" JVMs, and still being

in development stage lacking sophisticated high-level optimizations, it is nonetheless equal to

or superior to the Sun's (classic) JIT compiler on SpecJVM benchmarks, and attains about

half the speed of the fastest JIT compilers that are much more complex, closed, and requires

a specialized JVM. At the same time, OpenJIT is designed to be a compiler framework in the

sense of Stanford SUIF[Uni], in that it facilitates high-level and low-level program analysis

and transformation framework for the users to customize.

OpenJIT is still in active development, and we have just started distributing it for free for

non-commercial purposes from http://www.openjit.org/. It has shown to be quite portable,

thanks in part to being written in Java|the Sparc version of OpenJIT runs on Solaris, and

the x86 version runs on di�erent breeds of Unix including Linux, FreeBSD, and Solaris. We

are hoping that it will stem and cultivate interesting and new research in the �eld of compiler

development, re
ection, portable code, language design, dynamic optimization, and other

areas.

The purpose of the paper is to describe our experiences in building OpenJIT, as well as

presenting the following technical contributions:

1. We propose an architecture for a re
ective JIT compiler framework on a monolithic \clas-

sic" JVM, and identify the technical challenges as well as the techniques employed. The

challenges exist for several reasons, that the JIT compiler is re
ective, and also the char-

acteristics of Java, such as its pointer-safe execution model, built-in multi-threading, etc.

2. We show an API that adds to the existing JIT compiler APIs in \classic" JVM to allow

re
ective JITs to be constructed. Although still early in its design, and requiring de�ni-

tions of higher-level abstractions as well as additional APIs for supporting JITs on more

modern VMs, we nonetheless present a minimal set of APIs that were necessary to be

added to the Java VM in order to facilitate a Java JIT compiler in Java.

3. We perform extensive analysis of the performance characteristics of OpenJIT, both in

terms of execution speed and memory consumption. In fact, as far as we know, there

have not been any reports on any self-descriptive JIT compilation performance analysis,

nor memory consumption reports for any JIT compilers. In particular, we show that

(1) JIT compilation speed does not become a performance issue, especially during the

bootstrap process when much of the OpenJIT compiler is run under interpretation, (2)

memory consumption of re
ective JITs, however, could be problematic due to recursive

compilation, especially in embedded situations, (3) that there are e�ective strategies to

solve the problems, which we investigate extensively, and (4) that the solutions do not

add signi�cant overhead to overall execution, due to (1). In fact, the self-compilation time

of OpenJIT is quite amortizable for real applications.

4. We demonstrate how re
ective JITs could be useful class- or application speci�c cus-

tomization and optimization by providing an important re
ective \hook" into a Java

system, with the notion of compilets. Although the current examples are small, we never-

theless present a possibility of larger-scale deployment of OpenJIT for uses in the above-

mentioned situations.
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Fig. 1. Comparison of Traditional JITs and OpenJIT

2 Overview of the OpenJIT Framework

2.1 OpenJIT: The Conceptual Overview

OpenJIT is a JIT compiler written in Java to be executed on \classic" VM systems such

as Sun JDK 1.1.x and JDK 1.2.x. OpenJIT allows a given Java code to be portable and

maintainable with compiler customization. With standard Java, the portability of Java is

e�ective insofar as the capabilities and features provided by the JVM (Java Virtual Machine);

thus, any new features that has to be transparent from the Java source code, but which JVM

does not provide, could only be implemented via non-portable means. For example, if one

wishes to write a portable parallel application under multi-threaded, shared memory model,

then some form of distributed shared memory (DSM) would be required for execution under

MPP and cluster platforms. However, JVM itself does not facilitate any DSM functionalities,

nor provide any software `hooks' for incorporating the necessary read/write barriers for user-

level DSM implementation. As a result, one must either modify the JVM, or employ some

ad-hoc preprocessor solution, neither of which are satisfactory in terms of portability and/or

performance. With OpenJIT, the DSM class library implementor can write a set of compiler

metaclasses so that necessary read/write barriers, etc., would be appropriately inserted into

critical parts of code.

Also, with OpenJIT, one could incorporate platform-, application-, or usage-speci�c com-

pilation or optimization. For example, one could perform various numerical optimizations such

as loop restructuring, cache blocking, etc. which have been well-studied in Fortran and C, but

have not been well adopted into JITs for excessive runtime compilation cost. OpenJIT allows

application of such optimizations to critical parts of code in a pinpointed fashion, speci�ed by

either the class-library builder, application writer, or the user of the program. Furthermore,

it allows optimizations that are too application and/or domain speci�c to be incorporated as

a general optimization technique for standard compilers, as has been reported by [KLM+97].

In this manner, OpenJIT allows a new style of programming for optimizations, portabil-

ity, and maintainability, compared to traditional JIT compilers, by providing separations of

concerns with respect to optimization and code-generation for new features. That is to say,

with traditional JIT compilers, we see in the upper half of Figure 1, the JIT compilers would

largely be transparent from the user, and users would have to maintain code which might not

be tangled to achieve portability and performance. OpenJIT, on the other hand, will allow

the users to write clean code describing the base algorithm and features, and by selecting the

appropriate compiler metaclasses, or even by writing his own separately, one could achieve

optimization while maintaining appropriate separation of concerns. Furthermore, compared

to previous open compiler e�orts, OpenJIT could achieve better portability and performance,

as source code is not necessary, and late binding at run-time allows exploitation of run-time

values, as is with run-time code generators.
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2.2 Architectural Overview of OpenJIT

The OpenJIT architecture is largely divided into the frontend and the backend processors.

The frontend takes the Java bytecodes as input, performs higher-level optimizations involving

source-to-source transformations, and passes on the intermediate code to the backend, or

outputs the transformed bytecode. The backend is e�ectively a small JIT compiler in itself,

and takes either the bytecode or the intermediate code from the frontend as input, performs

lower-level optimizations including transformation to register code, and outputs the native

code for direct execution. The reason why there is a separate frontend and the backend is

largely due to modularity and ease of development, especially for higher-level transformations,

as well as defaulting to the backend when execution speed is not of premium concern. In

particular, we strive for the possibility of the two modules being able to run as independent

components.

Upon invocation, the OpenJIT frontend system processes the bytecode of the method in

the following way: The decompiler recovers the AST of the original Java source from the

bytecode, by recreating the control-
ow graph of the source program. At the same time, the

annotation analysis module will obtain any annotating info on the class �le, which will be

recorded as attribute info on the AST2.

Next, the obtained AST will be subject to optimization by the (higher-level) optimization

module. Based on the AST and control-
ow information, we compute the data & control de-

pendency graphs, etc., and perform program transformation in a standard way with modules

such as 
owgraph construction module, program analysis module, and program transformation

module using template matching. The result from the OpenJIT frontend will be a new byte-

code stream, which would be output to a �le for later usage, or an intermediate representation

to be used directly by the OpenJIT backend.

The OpenJIT backend system, in turn, performs lower-level optimization over the output

from the frontend system, or the bytecodes directly, and generates native code. It is in essence

a small JIT compiler in itself.

Firstly, when invoked as an independent JIT compiler bypassing the frontend, the low-level

IL translator analyzes and translates the bytecode instruction streams to low-level intermedi-

ate code representation using stacks. Otherwise the IL from the frontend is utilized. Then, the

RTL Translator translates the stack-based code to intermediate code using registers (RTL).

Here, the bytecode is analyzed to divide the instruction stream into basic blocks, and by

calculating the depth of the stack for each bytecode instruction, the operands are generated

with assumption that we have in�nite number of registers. Then, the peephole optimizer would

eliminate redundant instructions from the RTL instruction stream, and �nally, the native code

generator would generate the target code of the CPU, allocating physical registers. Currently,

OpenJIT supports the SPARC and the x86 processors as the target, but could be easily

ported to other machines. The generated native code will be then invoked by the Java VM,

as described earlier.

3 Details of the OpenJIT Frontend System

As described in Section 2, the OpenJIT frontend system provides a Java class framework for

higher-level, abstract analysis, transformation, and specialization of Java programs which had

already been compiled by javac: (1) The decompiler translates the bytecode into augmented

AST, (2) analysis, optimizations, and specialization are performed on the tree, and (3) the

AST is converted into the low-level IL of the backend system, or optionally, a stream of

bytecodes is generated.

2 In the current implementation, the existence of annotation is a prerequisite for frontend processing;

otherwise, the frontend is bypassed, and the backend is invoked immediately.
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Fig. 2. Overview of OpenJIT Frontend System

Transformation over AST is done in a similar manner to Stanford SUIF, in that there is a

method which traverses the tree and performs update on a node or a subtree when necessary.

There are a set of abstract methods that are invoked as a hook. The OpenJIT frontend

system, in order to utilize such a hook functionality according to user requirements, extends

the class �le (albeit in a conformable way so that it is compatible with other Java platforms)

by adding annotation info to the class�le. Such an info is called \class�le annotation".

The overall architecture of the OpenJIT frontend system is as illustrated in Fig. 2, and

consists of the following four modules:

1. OpenJIT Bytecode Decompiler

Translates the bytecode stream into augmented AST. It utilizes a new algorithm for

systematic AST reconstruction using dominator trees.

2. OpenJIT Class Annotation Analyzer

Extracts class�le annotation information, and adds the annotation info onto the AST.

3. OpenJIT High-level Optimizer Toolkit

The toolkit to construct \compilets", which are modules to specialize the OpenJIT fron-

tend for performing customized compilation and optimizations.

4. Abstract Syntax Tree Package

Provides construction of the AST as well as rewrite utilities.

We �rst describe the class�le annotation, which is a special feature of OpenJIT, followed

by descriptions of the four modules.

3.1 Class�le Annotation

Class�le annotation in OpenJIT is additional info or directive added to the class�le to direct

OpenJIT to perform class�le-speci�c (or application-speci�c, platform-speci�c) optimization

and customization. Here are examples of directives possible with class�le annotations:

{ Support for User-de�ned Optimizers and Specializers

{ Support for Memory Models e.g., DSM

{ Optimizing Numerical Code

In order to implement the class�le annotation feature, we employ the attribute region of of

each method in the class�le. According to the JVM specs, any attributes that the JVM does

not recognize are simply ignored; thus, class�les with OpenJIT annotations can be executed

on platforms without OpenJIT, achieving high portability (save for the programs that do not

work without OpenJIT). One caveat is that there is no simple way to add extra information

in the attribute �eld of classes themselves, due to the lack of appropriate JIT interface in the
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JVM; thus, one must employ some convention, say, de�ning a \dummy" null method that

is called by the constructor, whose sole purpose is to supply class-wide annotation info that

would be cached in the OpenJIT compiler.

In order to create a class�le with annotation information, we either employ an extended

version of source-to-bytecode compilers such as javac; for class�les without source, we could

use a tool to add such annotation in an automated way; in fact the tool we are currently

testing is a modi�ed version of the OpenJIT frontend system.

3.2 OpenJIT Bytecode Decompiler Module

OpenJIT Bytecode Decompiler inputs the bytecode stream from the class�le, and converts it

into an augmented AST. The module processes the the bytecode in the following way:

1. Converts the bytecode stream into an internal representation of JVM instruction, and

marks the instructions that become the leading instruction of basic blocks.

2. Construct a control 
ow graph (CFG) with basic block nodes.

3. Construct a dominator tree that corresponds to the CFG.

4. Reconstruct the Java AST by symbolic execution of the instructions within the basic

block.

5. Discover the control 
ow that originated from the short-circuit optimizations of the Java

conditional expressions such as && or || and (x ? a * b), and recover the expressions.

6. Reconstruct the Java control structure using the algorithm described in [MOM99].

7. Output the result as an AST, augmented with control-
ow and dominator information.

All the above steps except (6) are either simple, or could be done with existing tech-

niques, such as that described in [Ole97]. Step (6), is quite di�cult; most previous techniques

published so far analyzed the CFG directly, and used pattern matching to extract valid

Java control structures [Ole97, TS97]. Instead, we have proposed an algorithm which walks

over the dominator tree, and enumerates over every possible patterns of dominance relation,

which has a corresponding Java control structure. Compared to existing techniques such as

Krakatoa[TS97], our method was shown to be faster, and more robust to code obfuscation.

Some preliminary details can be found in [MOM99].

3.3 OpenJIT Class Annotation Analyzer Module

The OpenJIT Class Annotation Analyzer module extracts the class annotation from a class�le,

and adds the annotation info to the AST. The added annotations are typically compilets that

modify the compiler more concretely, it processes the annotation in the following way:

1. First, it access the attribute region of the method. This is done by parsing the method

block region extracted from the JVM.

2. We process this byte array assuming that the annotation object has been serialized with

writeObject(), constructing an annotation object.

3. we attach the annotation object to the AST as annotation information.

Because what kind of information is to be embodied in the class�le annotation di�ers

according to its usage, the OpenJIT_Annotation is actually an abstract class, and the user

is to subclass a concrete annotation class. The abstract superclass embodies the identi�er of

the annotation, and the AST node where it is to be attached. This is similar in principle to

SUIF, except that the annotation must be extracted from the class�le instead of being given

a priori by the user.
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3.4 OpenJIT High-level Optimizer Toolkit

OpenJIT High-level Optimizer Toolkit is used to construct OpenJIT compilets, that are a set

of classes that customizes the compiler. The toolkit provides means of utilizing the augmented

AST for implementing traditional compiler optimizations, and is largely composed of the

following three submodules: 3

1. Flowgraph Constructor

Flowgraph Constructor creates various (
ow) graphs from the augmented AST, such

as data
ow graph, FUD chains, control dependence graph, etc. The Flowgraph class is

an abstract class, and Factory Method pattern is employed to construct user-de�ned


owgraphs.

2. Flowgraph Analyzer

The Flowgraph Analyzer performs general computation over the 
owgraph, i.e., data
ow

equation solving, handling merges, �x point calculation, etc. We employ the Command

Pattern to subclass the Analyzer class for each algorithm, and each subclass triggers its

own algorithm with the execute() method. The user can subclass the Analyzer class to

add his own 
owgraph algorithm.

3. Program Transformer

The Program Transformer employs declarative pattern matching and rewrite rules to

transform the augmented AST. One registers the rule using the following API:

{ register pattern(Expression src, Expression dst)

{ register pattern(Statement src, Statement dst)

Registers the transformation rule that transforms the src pattern to the dst pattern.

The pattern can be constructed using the Abstract Syntax Tree Package described

next.

{ substitution(Expression root)

{ substitution(Statement root)

Searches the subtree with the designated root node depth-�rst, and if a match is

found with the registered patterns, we perform the transformation.

Initial use of the current pattern matching technique proved to be somewhat too low-level;

in particular, generation and registration of the transformation rule is still cumbersome.

The next version of OpenJIT will have APIs to generate patterns and transformation rules

from higher-level speci�cations, in particular for well-known program transformations

(such as code motion, loop transformation, etc.)

3.5 Abstract Syntax Tree Package

The Abstract Syntax Tree Package is a utility package called from other parts of the OpenJIT

frontend to implement low-level construction of the augmented AST, patterns for transfor-

mation rules, etc. The AST essentially implements the entire syntactic entities of the Java

programming language. Each node of the AST corresponds to the expression or a statement

in Java. The class hierarchy for the package is organized with appropriate subclassing of over

100 classes: (Fig. 3). We show typical Expression and Statement classes in Fig. 4 and Fig. 5,

respectively.

A typical Expression subclass for a binary operator (MultiplyExpression in the exam-

ple) consists of the operator ID, left-hand and right-hand expressions, and reference to an

3 In the current version, compilets are not downloadable; this is primarily due to the fact OpenJIT

itself is not yet entirely downloadable due to a few restrictions in the JVM. We are currently

working to circumvent the restrictions, and a prototype is almost working. Meanwhile, the Toolkit

itself is available, and a custom version of OpenJIT can be created with \static" compilets using

standard inheritance.
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{ Node

� Expression

� BinaryExpression

� AddExpression

� SubtractExpression

� MultiplyExpression

� ...

� UnaryExpression

� ConstantExpression

� ...

� Statement

� IfStatement

� ForStatement

� WhileStatement

� CaseStatement

� ...

Fig. 3. Class Hierarchy of The Abstract Syntax Tree Package

annotation object. The code() method either generates the low-level IL for the backend, or

a Java bytecode stream. The code() method walks over the left- and right-hand expressions

in a recursive manner, generating code. When a node has non-null reference to an annotation

object, it calls the execute() method of the annotation, enabling customized transformations

and compilations to occur.

As a typical Statement subclass, IfStatement recursively generates code for the condi-

tional in a similar manner to Expressions.

As such, the current OpenJIT is structured in a similar manner to OpenC++[Chi95], in

that syntactic entities are recursively compiled. The di�erence is that we provide annotation

objects that abstracts out the necessary hook to the particular syntax node, in addition to

customization of the syntax node themselves. Thus, it is possible to perform similar re
ective

extensions as OpenC++ in an encapsulated way.

public class MultiplyExpression extends BinaryExpression {

int op; // Construct ID

Expression left; // LHS expression

Expression right; // RHS expression

Type type; // Type of this expression

Annotation ann; // Embedded Annotation (default: null)

void code() { // Convert AST to backend-IR form

// (or bytecodes)

if (ann) ann.execute(this); // call-back for metacomputation

left.code(); // generate code for LHS

right.code(); // generate code for RHS

add(op); // generate code for "operator"

}

Expression simplify() {} // Simplify expression form

// (e.g. convert "a * 1" to "a")

...

}

Fig. 4. An Expression Class for A Typical Binary Expression (Multiply)
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public class IfStatement extends Statement {

int op; // Construct ID

Expression cond; // Condition expression

Statement ifTrue; // Statement of Then-part

Statement ifFalse; // Statement of Else-part

Annotation ann; // Embedded Annotation (default: null)

void code() { // Convert AST to backend-IR form

// (or bytecodes)

if (ann) ann.execute(this); // call-back for metacomputation

codeBranch(cond); // generate code for Condition

ifTrue.code(); // generate code for Then-part

ifFalse.code(); // generate code for Else-part

addLabel(); // add label for "Break" statement

}

Statement simplify() {} // Simplify statement form

// (e.g. if (true) S1 S2 => S1)

...

}

Fig. 5. A Example Statement Class for the \If" Statement

4 OpenJIT|Backend and its Technical Issues

4.1 Overview of the OpenJIT backend system

As a JIT compiler, the high-level overview of the workings of OpenJIT backend is standard.

The heart of the low-level IL translator is the parseBytecode()method of the ParseBytecode

class, which parses the bytecode and produces an IL stream. The IL we de�ned is basically an

RISC-based, 3-operand instruction set, but is tailored for high a�nity with direct translation

of Java instructions into IL instruction set with stack manipulations for later optimizations.

There are 36 IL instructions, to which each bytecode is translated into possibly a sequence of

these instructions. Some complex instructions are translated into calls into run-time routines.

We note that the IL translator is only executed when the OpenJIT backend is used in a

standalone fashion; when used in conjunction with the frontend, the frontend directly emits

IL code of the backend.

Then, RTL converter translates the stack-based IL code to register based RTL code. The

same IL is used, but the code is restructured to be register-based rather than encoded stack

operations. Here, a data
ow analyzer is then run to determine the type and the o�set of

the stack operands. We assume that there are in�nite number of registers in this process.

In practice, we have found that 24{32 registers are su�cient for executing large Java code

without spills when no aggressive optimizations are performed[SK96]. Then, the peephole

optimizer would eliminate redundant instructions from the RTL instruction stream.

Finally, the native code generator would generate the target code of the CPU. It �rst

converts IL restricting the number of registers, inserting appropriate spill code. Then the IL

sequence is translated into native code sequence, and ISA-speci�c peephole optimizations are

performed. Currently, OpenJIT supports the SPARC and x86 processors as the target, but

could be easily ported to other machines4. The generated native code will be then invoked

by the Java VM, upon which the OpenJIT runtime module will be called in a supplemental

way, mostly to handle Java-level exceptions.

4 Our experience has been that it has not been too di�cult to port from SPARC to x86, save for its

slight peculiarities and small number of registers, due in part being able to program in Java. We

expect that porting amongst RISC processors to be quite easy.
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Fig. 6. Overview of the OpenJIT Backend System

The architectural outline of the OpenJIT backend is illustrated in Figure 6. Further details

of the backend system can be found in [Shi98].

4.2 Technical challenges in a Re
ective Java JIT compiler

As most of OpenJIT is written in Java, the bytecode of OpenJIT will be initially interpreted

by the JVM, and gradually become compiled for faster, optimized execution. Although this

allows the JIT compiler itself to adapt to the particular execution environment the JIT

optimizes for, it could possibly give rise to the following set of problems:

1. Invoking the Java-based JIT compiler from within the JVM As the JIT compiler is invoked

in the midst of a call chain of the base Java program. There must be a smooth way to

massaging the JVM into invoking a JIT compiler in Java in a separate context.

2. Recursive Compilation: The current OpenJIT is designed to be entirely bootstrapped in

\cold" mode, i.e., no parts of the JIT compiler are precompiled. Thus, as is with any

re
ective system, there must be some mechanism to stop the in�nite recursive process,

and \bottom out". This is a little more subtle than conventional compiler bootstrapping,

as compilation occurs at runtime coexisting with compilation of applications; furthermore,

the mechanism must be safe w.r.t. Java multi-threading, i.e., no deadlocks should occur.

3. Speed and Memory E�ciency of the JIT compiler: a JIT compiler is bene�cial only if the

combined (compilation time + execution time) is smaller than the interpretation time

under JVM. In more practical terms, OpenJIT must compete with traditional C-based

JIT compilers for performance. Here, because of the interpretation and possible slowness

of JIT execution even if itself were JIT compiled due to quality of generated native code,

it is not clear if such goals could be satis�ed. Moreover, memory e�ciency is of primary

concern, especially for embedded systems. In this regard, there is a particular issue not

present in C-based JIT compilers.
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Fig. 7. Invoking OpenJIT

4. Lack of appropriate API for Java-written JIT compilers in standard JVM: A JIT compiler

must be able to introspect and modify various data structures within the JVM. Unfortu-

nately, JVM does not have any APIs for that purpose, primarily because it is likely that

JIT compilers were assumed to be written with a low-level language such as C. For this

purpose, there must be appropriate Java-level APIs which must be reasonably portable

for JVM introspection in OpenJIT.

We brevety, we only cover the most salient technical features here: for complete technical

details readers are referred to [SM99].

Invoking the Java-based JIT compiler from within the JVM In a \classic" JVM, for

each method, both JIT compilation and transfer of control to the native method happens at

the point of the subject method invocation. The JVM interpreter loop is structured as follows.

When a method is invoked, the invoker function of the methodblock structure (a structure

internal to the JVM which embodies various info pertaining to a particular method) mb is

called. Under interpretive execution, this in turn calls the JVM to generate a new Java stack

frame. The �rst argument of invoker() function o is the class object for static method calls,

and the invoked object on normal method calls. The second argument mb is a pointer to the

methodblock structure, etc.

while(1) {

get opcode from pc

switch(opcode) {

...(various implementation of the JVM bytecodes)

callmethod:

mb->invoker(o, mb, args_size, ee);

frame = ee->current_frame; /* setup java frame */

pc = frame->lastpc; /* setup pc*/

break;

}

}

We substitute the value of the invoker in methodblock structure of every method to

OpenJIT_invoke when a class is loaded. The OpenJIT_invoke function is de�ned as follows

in C:
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bool_t OpenJIT_invoke(JHandle *o, struct methodblock *mb,

int args_size, ExecEnv *ee);

This function in turns calls the OpenJIT_compile() in the C runtime to dynamically com-

pile the method. Thereafter, the control is transferred to mb->invoker, transferring control

to the just compiled method. The called OpenJIT_compile performs the following functions:

Mutual exclusion to prevent simultaneous compilation of the same method Wemust

prevent multiple threads from compiling the same method at the same time with proper

mutual execution using a compile lock. We reserve a bit in the methodblock structure as

a lock bit.

Setup of invoker and CompiledCode �elds in the methodblock structure When a

method is invoked, and subject to compilation, we reset the invoker and other �elds in

the methodblock so that any subsequent invocation of the method will have the method

run by the interpreter during compilation. This allows natural handling of recursive self-

compilation of OpenJIT compiler classes.

Invocation of the body of the JIT compiler The Java method to invoke the compiler

is then upcalled. An instance of a new JIT compiler in Java (to be more speci�c, its

upcall entry class) is allocated and initialized for each JIT compiler invocation. Then, the

compile()method of the instantiated entry class is up with do_execute_java_method_vararg().

Note that the current call context is preserved in the stack; that is to say, the same thread

is utilized to make the upcall.

Postprocessing of JIT compilation After compilation, control returns to the C runtime.

At this point, most of the compiler becomes garbage, except for the persistent information

that must be maintained across method compilations. This is to facilitate dynamic change

in the compiler with compilets, and also to preserve space, directly exploiting the memory

management feature of Java. If the compilation is successful, we set the invoker �eld of

the methodblock structure to the compiled native code. When compilation fails: The

methodblock �eld values are restored to their original values. 5

In this manner, the JIT compiler in Java is smoothly invoked on the same execution

thread. In practice it is much more complicated, however, due to possibility of exceptions,

JIT compilation occurring even on calls from native methods, advanced features such as

backpatching, inlining, and adaptive compilation. Some of the issues are further discussed

below, while for the rest refer to [SM99].

Recursive Compilation Recursive compilation is handled at the C runtime level of Open-

JIT with simple locking mechanism, as we see in the following simpli�ed code fragment (in

practice, it would include more code such as support for adaptive compilation):

COMPILE_LOCK(ee);

if (COMPILE_ON_THE_WAY(mb)) {

/* now compiling this method. avoid from double compiling */

COMPILE_UNLOCK(ee);

return;

}

START_COMPILE(mb);

/* reset invoker temporarily */

mb->invoker = (mb->fb.access & ACC_SYNCHRONIZED) ?

5 In practice, the invoker �eld is not directly substituted for the compiled native method, but rather

we invoke a native code stub, depending on the type of the return argument. This is done to handle

exceptions, java re
ection, calls between native and interpreted code, etc.
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invokeSynchronizedJavaMethod : invokeJavaMethod;

/* reset dispatcher temporarily */

mb->CompiledCode = (void *)dispatchJVM;

COMPILE_UNLOCK(ee);

This is essentially where the compilation \bottoms out"; once the method starts to be com-

piled, a lock is set, and further execution of the method will be interpreted. In fact, in Java

we actually obtain this behavior for free, as mutual exclusion of multi-threaded compilation

has to be dealt with in any case, defaulting to interpretation.

However, in the case of recursive compilation, there are some issues which do not exist for

C-based JIT compilers:

{ Possibility of Deadlocks| We must be assured that, as long as JIT compiler obeys the

locking protocol, recursive multi-threaded compilation does not cause any deadlocking

situations. This is proven by showing that cyclic resource dependencies will not exist

between the multi-threaded compilations. Let the dependencies between the methods be

denoted m
c

1 �! m
c

2, where for execution of compiled method m
c

1 we need to execute

a compiled method m
c

2. We further distinguish compiled and interpreted execution of

methods with m
c and m

i, respectively. Then, starting from the entry method as a node,

graph of dependency relations will clearly form a tree for single-threaded case. For multi-

threaded case, however, it must be shown that arbitrary interleavings of the tree via

possible self compilation will only create DAGs. Informally this simply holds because all

mi's will not be dependent on any other nodes, and thus the cycle will have to be formed

amongst mc's, which is not possible. The formal proof will be a subject of our future

paper.

We also note that, in practice, deadlocks could and does occur not only between the JIT

compiler and the JVM. One nasty bug which took a month to discover was in fact such a

deadlock bug. As it turns out, the \classic" JVM locks the constant pool for a class when

its �nalizer is run. This could happen just when OpenJIT tries to compile the �nalizer

method, resulting in a deadlock.

{ Speed and Memory Performance Problems| Aside from the JIT compiler merely working,

we must show that the JIT compiler in Java could be time and memory e�cient. The issue

could be subdivided into cases where the OpenJIT is compiling (1) application methods,

and (2) OpenJIT methods. The former is simply shown by extensive analysis of standard

benchmarks in Section 5, where it is shown that OpenJIT achieves good time and memory

performance and despite being constrained by the limitations of the \classic" VM, such as

handle-based memory systems implementation, non-strict and non-compacting GC, slow

monitor locking, etc. The latter is much more subtle: because of recursive compilation,

two undesirable phenomena occur. (A) compilation of a single application bytecode will

set o� a chain of recursive compilations, due to the dependency just discussed. This

has the e�ect of accumulating compiling contexts of almost the entire OpenJIT system,

putting excessive pressure on the memory system. (B) We could prevent the situation

by employing adaptive compilation and defaulting back to interpretation earlier, but this

will have the e�ect of slowing down the bootstrap time, as long as possibly having some

residual e�ect on application compilation due to some OpenJIT compiler methods still

being interpreted.

(A) and (B) are strongly interrelated; in the worst case, we will be trading speed, especially

the bootup time, for space. On the other hand, one could argue that little penalty is

incurred by adaptive means, not because of the typical execution frequency argument,

but rather, that because of recursive compilation, much of the OpenJIT system could

be compiled under interpretation in the �rst place. We perform extensive performance

analysis to investigate this issue in Section 5.
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Lack of appropriate API for Java-written JIT compilers in standard JVM None

of the current Java VMs, including the \classic" VM for which OpenJIT is implemented,

have su�cient APIs for implementing a JIT compiler in Java. In particular, JVM basically

only provides APIs to invoke a C-based JIT compiler, but does not provide su�cient APIs

for generalized introspection or intersession features. Note that we cannot employ the Java

re
ection API either, for it abstracts out the information required by the JIT compiler.

Instead, we de�ne a set of native methods as a part of the OpenJIT runtime. The Compile

class declares the following native methods, which are de�ned in api.c of the distribution.

There are 17 methods in all, which can be categorized as follows:

{ Constant pool introspection methods

public final native int ConstantPoolValue(int index);

private final native int ConstantPoolTypeTable(int index);

public final int ConstantPoolType(int index) {

public final boolean ConstantPoolTypeResolved(int index) {

public final String ConstantPoolClass(int index) {

private native byte[] ConstantPoolClass0(int index);

public final String ConstantPoolName(int index) {

private native byte[] ConstantPoolName0(int index);

public final native int ConstantPoolAccess(int index);

public final native byte[] ConstantPoolMethodDescriptor(int index);

public final native int ConstantPoolFieldOffset(int index);

public final native int ConstantPoolFieldAddress(int index);

{ Native method allocation and re
ection

public final native void NativeCodeAlloc(int size);

public final native int NativeCodeReAlloc(int size);

public final native void setNativeCode(int pc, int code);

public final native int getNativeCode(int pc);

private native byte[] MethodName()

{ Class resolution methods (used for inlining)

public final native void initParser(int caller_cp, int index);

public final native void resolveClass(int caller_cp, int index)

As one can see, majority of the methods are such that either introspective or intercessive

operations being performed on the JVM.

The current API is su�cient, but admittedly too low level of abstraction, in that it exposes

too much of the underlying VM design; indeed, our goal is to allow JITs to be a customizable

and portable hook to the Java system, and thus, have OpenJIT be portable across di�er-

ent kinds of VMs. For this purpose, in the next version of OpenJIT, we plan to design a

substantially higher-level API, abstracting out the requirements of the di�erent VMs. The

implementation of the API for \classic" VM will sit on the current APIs, but other VMs will

have di�erent implementations of native methods.

Another issue is the safety of the API. In the current implementation, the OpenJIT na-

tive method APIs are accessible to all the classes, including the application classes. It is easy

to restrict the access to just the compiler classes (those with path org.OpenJIT.), but this

will preclude user-de�ned compilets. Some form of security/safety measures with scope con-

trol, such as restricting access only to signed class�les, might be necessary. We are currently

investigating this possibility to utilize the security API in JDK 1.2.
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5 Performance Analysis of OpenJIT

We now analyze the behavior of OpenJIT with detailed benchmarks. As mentioned earlier, our

concern is both execution speed and memory usage. The former is obvious, as the execution

overhead of the JIT compiler itself as well as quality of generated code will have to match

that of conventional JIT compilers. Memory usage is also important, especially in areas such

as embedded computing, one of major Java targets.

All the OpenJIT objects, except for the small C runtime system, coexists in the heap with

the target application. The necessary working space includes that of various intermediate

structures of compiler metaobjects that the OpenJIT builds, including various 
owgraphs,

intermediate code, etc., and persistent data, such as the resulting native code. Standard C-

based JIT compilers will have to allocate such structures outside the Java heap; thus, memory

usage is fragmented, and e�cient memory management of the underlying JVM is not utilized.

For OpenJIT, since both the application and compiler metaobjects will coexist in the heap,

it might seem that we would obtain the most e�cient usage of heap space.

On the other hand, the use of Java objects, along with automated garbage collection, could

be less memory e�cient than C-based JITs. Moreover as mentioned in Section 4, there could

be a chain of recursive compilations which will accumulate multiple compilation contexts,

using up memory. It is not clear what kind of adaptive compilation techniques could be

e�ective in decreasing the accumulation, while not resulting in substantial execution penalty.

5.1 Benchmarking Environment

As an Evaluation Environment, we employed the following platform, and pitted OpenJIT

against Sun's original JIT compiler (sunwjit) on JDK 1.2.2 (ClassicVM).

{ Sun Ultra60 (UltraSparc II 300MHz�2, 256MB)

{ Solaris 2.6-J

{ JDK 1.2.2 (ClassicVM)

We took six programs from the SPECjvm98 benchmark, as well as the simple \Hello

World" benchmark. The six| 201 compress (�le compression), 202 jess (expert system),

209 db (DBMS simulator), 213 javac (JDK 1.0.2 compiler), and 227 mtrt (multi-threaded

raytracer), and 228 jack (parser generator)| have been chosen as they are relatively compute

intensive, do not involve mere simple method call loops, and not reliant on runtime native

calls such as networks, graphics, etc. \Hello World" benchmark super�cially only makes a call

to System.out.println(), but actually it will have executed almost the entire OpenJIT system,

the Java packages that OpenJIT employs, as well as the constructors of system classes. This

allows us to observe the bootstrap overhead of the OpenJIT system.

In order to obtain the precise pro�le information for memory allocation, we employed the

JVMPI (Java Virtual Machine Pro�ler Interface) of JDK 1.2.2. Additionally, we extended

OpenJIT to output its own pro�le information. This is because it is di�cult to determine

with JVMPI whether the allocated compiler metaobject is being used to compile application

methods, or used for recursive compilation, because JVMPI merely reports both to be of the

same class (say, merely as instances of ILnode, etc.). By combining JVMPI and OpenJIT

pro�le information, we obtain precise information of how much space the live OpenJIT com-

piler metaobjects occupy, how much native code is being generated, how much of the native

code is that of OpenJIT, along the execution timeline. Also, how much class�les are being

loaded, how many methods are being compiled, and what is the percentage of the OpenJIT

classes, can be pro�led as well.

Such pro�ling is done in real-time, in contrast to the simulation based pro�ling of SpecJVM

memory behavior in [DH99]. Such an approach is di�cult to apply for our purpose, as JIT
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Table 1. Code size of OpenJIT and C runtimes

classes (�les) methods # lines class�le (stripped binary) bytes

Frontend 243 1,439 24,148 629,062

Backend (sparc) 23 182 7,560 118,592

Backend (x86) 21 182 8,085 118,125

C runtime(sparc) 3 3,565 42,556

C runtime(x86) 3 3,752 28,928

sunwjit (sparc) 234,112

sunwjit (x86) 146,508

compilation is being directly involved, resulting in code not directly pro�lable with JVM

simulation. Our compiler-assisted pro�ling allows us to obtain almost as precise an information

as that of [DH99] at a fraction of time. Nevertheless, the pro�le information generated is quite

large, reaching several hundred megabytes for each SpecJVM run.

5.2 Benchmarking Contents

The Size of OpenJIT We �rst show the code size of OpenJIT compared to sunwjit. As we

can see, the frontend is approximately 3 times the size of backend in terms of number of lines,

and factor of approximately 8{10 larger in terms of number of classes and methods. This is

because the frontend contains numerous small classes representing syntactic entities of Java,

whereas the backend has much larger method size, and the backend IL does not assign a class

for each instruction. We also see that the combined size of OpenJIT backend and C runtime

is smaller than sunwjit, but when it is self-compiled, the x86 version could get larger. Thus,

this raises an interesting issue of what happens if we run the compiler always interpreted in

embedded situations; in the subsequent benchmark, we will also investigate this possibility.

Baseline Performance We next observe the baseline execution time and memory us-

age characteristics of OpenJIT. We set the heap limit to 32MBytes (as mandated by the

SpecJVM98 benchmarks) comparing the execution of JVM interpreter, sunwjit, OpenJIT

with self compilation, and OpenJIT without self compilation. Table 2 shows for each execu-

tion, how many classes are loaded and their sizes, how many objects are allocated (parenthesis

indicates how many OpenJIT compiler metaobjects), how much memory size are allocated

(and that of OpenJIT compiler metaobjects), wallclock execution time, and number of GCs.

Figure 8 additionally show consumed overall heap space, live OpenJIT object heap space,

along the time axis. This shows the process of compiler bootstrapping. The compilation in

OpenJIT was set to be most aggressive i.e., all the methods are JIT compiled on their �rst

invocations, and the entire frontend had been turned o�, and are not loaded.

The Hello benchmark exempli�es the overhead of bootstrapping openjit and openjit-int;

compared to sunwjit, we see approximately 2.8 times increase in startup time, indicating that

compilation with OpenJIT incurs approximately�3 overhead over sunwjit. On the other hand,

di�erent between openjit and openjit-int is negligibly small; this indicates that overhead of

self compilation is almost negligible, but rather, the overhead of system and library classes

are substantial (we observe approximately 457 methods compiled, as opposed to 128 methods

for OpenJIT).

For the six SPECjvm98 benchmarks, we see that the overhead is well amortized, and

OpenJIT is competitive with sunwjit, sometimes superior. The running time of programs

range between 56{172 seconds, so the overhead of JIT compilation is well amortized, even for

openjit-int, given the relative expense of OpenJIT compilation over sunwjit. Moreover, since

method-speci�c openjit compiler metaobjects are mostly thrown away on each compilation,

in principle we do not occupy memory compared to sunwjit (Fig. 8) In fact, we may be
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Table 2. Baseline Performance

Program JIT class# alloc obj# allocsize[MB] GC# time

(openjit) (openjit)

interpreter 167 4,890(|) 0.273(|) 0 0.380

Hello sunwjit 172 5,244(|) 0.285(|) 0 0.450

openjit 185 90,600(74,831) 2.906(2.316) 5 1.270

openjit-int 185 37,059(31,149) 1.265(0.941) 2 1.280

interpreter 224 15,547(|) 110.640(|) 20 673.910

201 sunwjit 226 9,399(|) 110.266(|) 16 89.620

compress openjit 241 136,328(107,197) 114.330(3.318) 21 72.530

openjit-int 241 81,910(62,742) 112.662(1.918) 18 74.460

interpreter 373 7,951,562(|) 221.919(|) 547 148.550

202 sunwjit 375 7,936,214(|) 221.190(|) 565 65.750

jess openjit 390 8,103,973(142,626) 226.383(4.402) 528 62.530

openjit-int 390 8,049,403(98,045) 224.710(2.998) 532 62.160

interpreter 218 3,218,293(|) 63.249(|) 33 307.480

209 sunwjit 220 3,213,851(|) 63.095(|) 32 142.160

db openjit 235 3,343,820(109,778) 67.104(3.398) 39 172.830

openjit-int 235 3,289,249(65,197) 65.431(1.994) 37 182.080

interpreter 386 5,972,713(|) 147.288(|) 80 200.940

213 sunwjit 388 5,936,663(|) 145.458(|) 69 94.850

javac openjit 403 6,181,295(208,562) 154.486(6.478) 77 102.960

openjit-int 403 6,126,571(164,145) 151.531(5.080) 67 108.850

interpreter 239 6,382,222(|) 84.118(|) 90 173.510

227 sunwjit 241 6,376,266(|) 83.902(|) 90 59.430

mtrt openjit 256 6,524,115(124,549) 88.467(3.855) 96 56.640

openjit-int 256 6,469,545(79,968) 86.794(2.451) 93 56.980

interpreter 270 6,878,777(|) 150.755(|) 451 196.330

228 sunwjit 272 6,868,951(|) 150.353(|) 465 66.669

jack openjit 287 7,046,695(152,625) 155.818(4.707) 286 66.970

openjit-int 287 6,992,109(108,001) 154.144(3.302) 276 68.010
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Fig. 8. Timeline behavior of heap usage and live object allocated by OpenJIT (interpreter, sunwjit,

openjit, openjit-int)

utilizing memory better due to sharing of the heap space with the application. The runtime

comparison of execution times of each program depends on each program. For compress,

openjit was 20% superior, whereas sunwjit was faster by about 18%. Other benchmarks are

quite similar in performance. Even small but unnegligible di�erence in compilation overhead,

OpenJIT is likely producing slightly superior code on average.

We do observe some anomalies, however. Firstly, for most cases OpenJIT had increased

invocations of GCs due to heap coexistence; but for jack and jess, OpenJIT had less GC invo-

cations, by approx. 40% and 5%, respectively. This is attributable to unpredictable behavior

of conservative GC in the \classic" JVM; it is likely that by chance, the collector happened

to mistake scalars for pointers on the stack. Neither really contributes signi�cantly to perfor-

mance di�erences. Another anomaly is that, in many cases openjit-int was faster than openjit

with self-compilation. This somewhat contradicts our observation that compilation DOES

incur some overhead, as di�erence between interpreted and compiled executions of OpenJIT

itself should manifest, but doesn't.

Figure 8 shows the timeline track of the amount of heap usage by the entire program, Open-

JIT (openjit) and interpreted OpenJIT (openjit-int), respectively, for the Hello benchmark.

Again, we observe that during bootstrapping, openjit and openjit-int require approximately

700Kbytes of heap space, which is about 2.6 times the heap space as sunwjit and pure inter-

preter. Since openjit-int does not allocate metaobjects to compile itself, and the amount being

consumed to compile methods of other classes are small, we attribute the consumption to the

system objects with the libraries being called from OpenJIT, and immediately released.

The Hello benchmark also veri�es that there are two phases of execution for OpenJIT.

Firstly, there is a bootstrap phase where the entire OpenJIT is aggressively compiled, accu-

mulating multiple compilation contexts in the call chain of the JIT compiler. Thus, the space

required is proportional to the critical path in the call chain. Then, it quickly falls o�, and
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Fig. 9. Timeline behavior of heap usage with SPECjvm98 (sunwjit vs. openjit)
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Table 3. SPECjvm98 results on Linux (x86)

Benchmark OpenJIT interpreter sunwjit IBM1.1.8

200 check 0.043 0.082 0.106 0.042

201 compress 40.828 316.687 59.338 18.236

202 jess 29.783 90.434 48.493 13.142

209 db 85.881 203.289 119.228 40.259

213 javac 56.227 120.199 70.698 30.964

222 mpegaudio 40.911 263.870 41.705 11.942

227 mtrt 30.101 96.156 37.337 17.014

228 jack 28.403 107.049 49.176 10.751

transcends into a stable phase where most parts of OpenJIT have been compiled, and only

application methods are being compiled and executed.

No matter how the memory is being used, the amount of additional heap space required

for recursively compiling OpenJIT will not be a problem for modern desktop environments, in

some situations. A typical desktop applications consumes orders of magnitude more space: for

example, our measurements in Figure 9 for javac shows it consumes more than 20 Mbytes6.

However, for embedded applications, such an overhead might be prohibitive. As discussed

earlier, this could be suppressed using less aggressive, adaptive compilation similar to the

Self compiler[Hol95], but it is not clear what strategy will achieve good suppression while

not sacri�cing performance. In the next section we consider several adaptive strategies for

suppression.

We have also taken some benchmarks on the x86 version of OpenJIT, and compared it

against IBM's JDK 1.1.8 JIT compiler, which is reputed to be the fastest JIT compiler for

x86, in neck to neck with Sun's Hotspot. Table 3 shows the results: we see that, for most

benchmarks, OpenJIT x86 is superior to sunwjit, and runs about half the speed of IBMs JIT,

despite being constrained by the \classic" JVM.

5.3 Adaptive OpenJIT Compilation Strategies

There are several criteria in the design space for adaptive compilation in OpenJIT for memory

suppression of the bootstrapping phase.

1. Alteration of JIT compilation frequency|
The most aggressive strategy will compile each method on its �rst invocation. We reduce

the frequency of compilation using the following strategies, with p as a parameter (p =

2; 4; 8; 16)
{ JIT compile on pth invocation, deferring to interpretation for the �rst p�1 invocations

(constant delay).
{ Assign each method a random number between [0, p � 1], and compile when the

number of invocation reaches that number (random delay).
{ Compile with probability 1=p on each invocation (probabilistic). reduced probability

increased the execution time by

2. Restriction of methods subject to adaptation|
We could delay compilation for all the methods, or alternatively, only those of the OpenJIT

compiler metaclasses. The former obviously will likely consume less space, but the former

may be su�cient and/or desirable, as it will not slow down the application itself. We

verify this by comparing altering compilation frequency changes to all classes, versus only

altering the frequency of OpenJIT method. For the latter, all other methods are compiled

on �rst invocation except for class initializers, which are interpreted.

6 [DH99] reports that with exact GC, the actual usage is approximately 6MBytes. The di�erence is

likely to be an artifact of conservative GC, our close examination has shown.
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Table 4. Alteration of JIT compilation frequency for all methods

Hello

criteria param method# alloc obj# alloc size [MB] GC# time

(openjit) (openjit) (openjit)

always { 457(128) 90,594(74,831) 2.905(2.316) 5 1.270

constant 2 225(126) 64,827(52,194) 2.117(1.629) 3 1.190

delay 4 180(116) 57,568(46,133) 1.898(1.445) 3 1.280

8 161(114) 55,743(44,470) 1.843(1.395) 4 1.250

16 151(113) 54,069(43,064) 1.793(1.352) 4 1.810

random 2 412(127) 84,739(69,746) 2.729(2.162) 5 1.270

delay 4 301(123) 72,686(59,272) 2.357(1.843) 4 1.190

8 231(120) 62,628(50,589) 2.050(1.578) 4 1.240

16 196(115) 61,923(49,790) 2.031(1.558) 3 1.350

probability 2 170(115) 56,383(45,041) 1.862(1.412) 4 1.280

4 190(115) 58,493(46,877) 1.924(1.466) 4 1.900

8 149(115) 53,710(42,735) 1.780(1.341) 3 2.010

16 112(99) 27,066(21,399) 0.955(0.664) 1 0.920

3. Restriction of number of simultaneous compilations|

We put global restriction on how many compilations can occur simultaneously. This can

be done safely without causing deadlocks. Attempt to compile exceeding this limit will

default back to the interpreter. (L = 1; 8). Note that, although simultaneous compilation

could occur for application methods under multi-threading, this primarily restricts the

simultaneous occurrence of deep recursive compilation chains on bootstrapping.

4. Restricting compilation of org.OpenJIT.ParseBytecode.parseBytecode()

This is a special case, as preliminary benchmarks indicated that parseBytecode(), is

quite large for a single method, (1576 lines of source code, 6861 JVM bytecodes), and

thus single compilation of this method creates a large structure in the heap space once it is

subject to compilation, irrespective of the strategies used. In order to eliminate the e�ect,

we test cases where compilation of parseBytecode() is restricted. In the next version of

OpenJIT we plan to factor the method into smaller pieces.

According to the Hello benchmark, in when adaptaion is applied to all the methods,

combinations of other schemes e�ectively yielded reduction in the number and size of objects

that are allocated during bootstrapping, without signi�cant increase in bootstrap time. On the

other hand, restricting compilation of OpenJIT method only did not yield signi�cant results,

except for the case when the entire OpenJIT was interpreted, or when parseBytecode() was

restricted, again, without signi�cant loss of performance.

The table only shows the total memory allocated. In order to characterize the peakmemory

behavior, we present the timeline behavior in Figure 10. Here, for each scheme, the parameter

with lowest peak is presented. We observe that, (1) probabilistically lowering the frequency

helps reduce the peak usage, and (2) parseBytecode dominates the peak. We are currently

conducting futher analysis, but it is conclusive that naive frequency adjustment does not help

to reduce the peak; rather, the best strategy seems to be to estimate the heap usage based on

bytecode length, and supressing compilation once a prescribed limit is exceeded. We should

be able to report on this in the camera-ready version of the paper.
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Table 5. Alteration of JIT compilation frequency for OpenJIT methods only

Hello

criteria param method# alloc obj# alloc size [MB] GC# time

(openjit) (openjit) (openjit)

always { 457(128) 90,594(74,831) 2.905(2.316) 5 1.270

constant 2 457(128) 90,526(74,757) 2.904(2.314) 5 1.240

delay 4 451(122) 89,616(73,988) 2.877(2.291) 5 1.260

8 449(120) 88,535(73,179) 2.845(2.265) 5 1.280

16 446(117) 85,699(71,112) 2.760(2.200) 5 1.800

random 2 457(128) 90,534(74,765) 2.904(2.314) 5 1.320

delay 4 455(126) 90,236(74,491) 2.895(2.306) 5 1.220

8 452(123) 89,780(74,115) 2.882(2.295) 5 1.230

16 450(121) 89,299(73,763) 2.868(2.284) 5 1.330

probability 2 450(121) 89,490(73,884) 2.873(2.288) 5 1.270

4 429(116) 83,831(69,523) 2.703(2.152) 4 1.980

8 446(117) 85,722(71,136) 2.760(2.201) 5 2.020

16 441(112) 84,637(70,295) 2.728(2.117) 4 0.910

limit 1 457(128) 90,590(74,821) 2.906(2.316) 4 2.530

simultaneity 8 457(128) 90,514(74,751) 2.903(2.314) 4 1.410

no parseBytecode { 456(127) 69,463(58,430) 2.248(1.788) 3 1.190

openjit-int { 329(0) 37,059(31,149) 1.265(0.941) 2 1.280
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6 Re
ective Programming with OpenJIT|A Preliminary Example

As a preliminary example, we tested loop transformation of the program in Fig. 12 into

an equivalent one as shown in Fig. 13 7. In this example, we have added a compilet called

LoopTransformer using the class annotation mechanism in the attribute region of the matmul()

method by using a tool mentioned in Section 3.1. The execute()method of the LoopTransformer

class searches the AST of the method it is attached to for the innermost loop of the perfect

tri-nested loop. There, if it �nds a a 2-dimensional array whose primary index is only bound

to the loop variable of the outermost loop, it performs the necessary transformation. The

overview of the LoopTransformer is shown in Fig. 11; the real program is actually about 200

lines, and is still not necessarily easy to program due to relatively low level of abstraction

that the tree package provides, as mentioned earlier. We are working to provide a higher level

API by commonizing some of the operations as a compilet class library.

public class LoopTransformer extends Annotation {

int loop_nest = 0;

LocalField index;

LoopTransformer() {}

boolean isRegularForm(Statement init, Expression cond, Expression inc) {

// Check the initializer and the conditions of the For statement

// to verify that it is in a normal form.

}

void execute(Node root) {

if (root instanceof CompoundStatement) {

for (int i = 0; i < root.args.length; i++) { execute(root.args[i]); }

}

// Test whether the loop is a perfect tri-nested loop

else if (root instanceof ForStatement &&

root.body instanceof ForStatement &&

root.body.body instanceof ForStatement) {

if (isRegularForm(root.init, root.cond, root.inc) &&

isRegularForm(root.body.init, root.body.cond, root.body.inc) &&

isRegularForm(root.body.body.init, root.body.body.cond, root.body.body.inc)) {

// Record the loop variable of the root

// Verify that root.body.body does not include a ForStatement

// If it doesn't then scan the RHS for a 2-dimensional

// array of the form ([] ([] index) _)

// If found then perform the appropriate transformation

} } }

else return;

} }

Fig. 11. Overview of LoopTransformer

We employed the same evaluation environment as Section 5. For OpenJIT, we compared

the results of executing Fig. 12 directly, and also transforming at runtime using the OpenJIT

frontend into Fig. 13. For sunwjit, we performed the transformation o�ine at source level,

and compiled both programs with javac. The size of the matrices (SIZE) are set to 200�200

and 600�600. Table 6 shows the results, before and after the transformation, and the setup

time required for JIT compilation. (The overhead of for sunwjit is zero as it had been done

o�ine.)

7 Note that although we are using the Java source to represent the program, in reality the program

is in bytecode form, and transformation is done at the AST level.
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public int[][] matmul(int[][] m1, int[][] m2) {

for (int i = 0; i < SIZE; ++i) {

for (int j = 0; j < SIZE; j++) {

for (int k = 0; k < SIZE; k++) {

T[i][j] += m1[i][k] * m2[k][j];

}

}

}

return T;

}

Fig. 12. Matrix Multiply Method (Original)

public int[][] matmul(int[][] m1, int[][] m2) {

for (int i = 0; i < SIZE; ++i) {

int tmp[] = m1[i];

for (int j = 0; j < SIZE; j++) {

for (int k = 0; k < SIZE; k++) {

T[i][j] += tmp[k] * m2[k][j];

}

}

}

return T;

}

Fig. 13. Matrix Multiply Method (Transformed)

We see that the execution time of OpenJIT and sunwjit are within 10% of each other. This

similar to SpecJVM98 where OpenJIT and sunwjit for SPARCs. So, for the purposes of this

benchmark, we can regard both systems to be essentially equivalent, and thus the bene�ts of

re
ection can be judged in a straightforward way.

The setup time for OpenJIT without frontend transformation is approximately 1.09 sec-

onds, compared to 0.49 seconds for sunwjit. This veri�es our benchmarks in the previous

section where the compiler bootstrap overhead was quite small. The 1.59 seconds di�erence

between the original and transformed is the overhead of frontend execution. The overhead

consists of the process described in Section 3. We believe we can improve this overhead sub-

stantially, as the frontend has not been tuned as much as the backend, especially regarding

generation of numerous small objects.

Still we see that, although when the matrix size is small (200 � 200), the overhead of

frontend processing with a compilet exceeds that of the speed gain, for larger problem (600 �

600) this overhead is amortized for 7% improvement. Moreover, we expect to further amortize

this as the transformation is done only once, and as a result, multiple execution of the same

method will not pay the overhead allowing us to essentially ignore the setup overhead for 9%

gain.

Table 6. Results of OpenJIT Frontend Optimization (All times are seconds)

matrix size 200 600

before after before after

OpenJIT 2.52 2.26 85.22 77.74

OpenJIT setup-time 1.09 2.68 1.09 2.67

sunwjit 2.34 2.06 80.19 73.55

sunwjit setup-time 0.49 0.49 0.49 0.49
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7 Related Work

As mentioned earlier, most modern compilers and language systems are bootstrapped in a self-

descriptive fashion, but they do not coexist at runtime. In fact, although Lisp and Smalltalk

systems embodied their own compilers written in terms of itself and executable at run-time,

they are typically source-to-bytecode compilers, and not bytecode-to-native code compilers,

which JITs are. In fact, as far as we know, there have not been any reports of a JIT compiler

for a particular language being re
ective. Most JIT compilers we have investigated, including

those for Lisp, Smalltalk, Java as well as experimental languages such as SELF, have been

written in C/C++ or in assembly language.

More recent e�orts in self-descriptive, practical object-oriented system is Squeak[IKM+97].

Squeak employs the Bluebook[GR83] self-de�nition of Smalltalk, then bootstraps it using C,

then further optimizes the generated VM. Bootstrapping in Squeak involves the VM only,

and not the JIT compiler. The recently-announced JIT Squeak compiler is written in C and

basically only merges the code fragments corresponding to individual bytecode. Thus, this is

not a true compiler in a sense, but rather a simple bytecode to binary translator. This was

done to achieve very quick porting of Squeak to various platforms, and stems from some of

the earlier work done in [PR98].

We know of only two other related e�orts paralleling our research, namely MetaXa[Gol98]

and Jalape~no[AAC+]. Metaxa overall is a comprehensive Java re
ective system, constructing

a fully re
ective system whereby many language features could be rei�ed, including method

invocations, variable access, and locking. MetaXa has built its own VM and a JIT compiler; as

far as we have communicated with the MetaXa group, their JIT compiler is not full-
edged,

and is speci�c to their own re
ective JVM. Moreover, their JIT is not robust enough to

compile itself8.

Jalape~no[AAC+] is a major IBM e�ort in implementing a self-descriptive Java system. In

fact, Jalape~no is an aggressive e�ort in building not only the JIT compiler, but the entire

JVM in Java.

The fundamental di�erence stems from the fact that Jalape~no rests on its own customized

JVM with completely shared address space, much the same way the C-based JIT compilers

are with C-based JVMs. Thus, there is little notion of separation of the JIT compiler and the

VM for achieving portability, and the required de�nition of clean APIs, which is mandated for

OpenJIT. For example, the JIT compilers in Jalape~no can access the internal objects of the

JVM freely, whereas this is not possible with OpenJIT. So, although OpenJIT did not face the

challenges of JVM bootstrapping, this gave rise to investigation of an e�ective and e�cient

way of interfacing with a monolithic, existing JITs, resulting in very di�erent technical issues

as have been described in Section 4.

The manner in which Jalape~no bootstraps is very similar to Squeak and other past sys-

tems. The way the type safety of Java is circumvented, however, is similar to the technique

employed in OpenJIT: there is a class called Magic, which de�nes a set of native methods

that implements operations where direct access to VM internals are required. In OpenJIT,

the Compile class de�nes a set of APIs using a similar technique. Unfortunately, again there

is no mention of attempting to develop the API into a clean one for generalized purposes of

self-descriptive JITs for Jalape~no.

There are other technical di�erences as well; OpenJIT is architected to be a compiler

framework, supporting features such as decompilation, various frontend libraries, whereas

it is not with Jalape~no. No performance benchmarks have been made public for Jalape~no,

whereas we present detailed studies of execution performance validating the e�ectiveness of

re
ective JITs, in particular memory pro�ling technique which directly exploits the `openness'

of OpenJIT. Interestingly enough, Jalape~no is claimed to be only targeting server platforms,

8 In fact, we are considering collaborative porting of OpenJIT to their system.
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and not desktop nor embedded platforms. It would be quite interesting to investigate the

memory performance of Jalape~no in the manner we have done, in particular to test whether

it makes sense to target smaller platforms or not.

Still, the Jalape~no work is quite impressive, as it has a sophisticated three-level compiler

system, and their integrated usage is de�nitely worth investigating. Moreover, there is a

possibility of optimizing the the application together with the runtime system in the VM. This

is akin to optimization of re
ective systems using the First Futamura projection in object

oriented languages, as has been demonstrated by one of the author's older work in [MMAY95]

and also in [MY98], but could produce much more practical and interesting results. Such an

optimization is more di�cult with OpenJIT, although some parts of JVM could be supplanted

with Java equivalents, resulting in a hybrid system.

There have been a number of work in practical re
ective systems that target Java, such

as OpenJava[TC98], Javassist[Chi98], jContractor[KHB99] , EPP[IR97], Kava[WS99], just to

name a few. Welch and Stroud present a comprehensive survey of Java re
ective systems,

discussing di�erences and tradeo�s of where in the Java's execution process re
ection should

occur[WS99].

Although a number of work in the context of open compilers have stressed the possibility

of optimization using re
ection such as OpenC++[Chi95], our work is the �rst to propose

a system and a framework in the context of a dynamic (JIT) compiler, where run-time in-

formation could be exploited. A related work is Welsh's Jaguar system[WC99], where a JIT

compiler is employed to optimize VIA-based communication at runtime in a parallel cluster.

From such a perspective, another related area is dynamic code generation and specializa-

tion such as [EP, GPM+99, Fuj]. Their intent is to mostly provide a form of run-time partial

evaluation and code specialization based on runtime data and environment. They are typi-

cally not structured as a generalized compiler, but have speci�c libraries to manipulate source

structure, and generate code in a \quick" fashion. In this sense they have high commonalities

with the OpenJIT frontend system, sans decompilation and being able to handle generalized

compilation. It is interesting to investigate whether specialization done with a full-
edged JIT

compiler such as OpenJIT would be either be more or less bene�cial compared to such speci�c

systems. This not only includes execution times, but also ease of programming for customized

compilation. Consel et. al. have investigated a hybrid compile-time and run-time specializa-

tion techniques with their Tempo/Harrisa system [VCC, SLCM99], which are source-level

Java specialization system written in C; techniques in their systems could be applicable for

OpenJIT with some translator to add annotation info for predicated specializations.

8 Conclusion and Future Work

We have described our research and experience of designing and implementing OpenJIT,

an open-ended re
ective JIT compiler framework for Java. In particular, we proposed an

architecture for a re
ective JIT compiler framework on a monolithic VM, and identify the

technical challenges as well as the techniques employed, including the minimal set of low-level

APIs required that needed to be added to existing JVMs to implement a JIT compiler in

Java, contrasting to similar work such as Jalapeno. We performed analysis of the performance

characteristics of OpenJIT, both in terms of execution speed and memory consumption, using

collaborative instrumentation technique between the JVM and OpenJIT, which allowed us to

instrument the JIT performance in real-time, and showed that OpenJIT is quite competitive

with existing, commercial JIT systems, and some drawbacks in memory consumption during

the bootstrap process could be circumvented without performance loss. We demonstrate a

small example of how re
ective JITs could be useful class- or application speci�c customization

and optimization by de�ning a compilet which allowed us to achieve 8-9% performance gain

without changing the base-level code.



28

Numerous future work exists for OpenJIT. We are currently redesigning the backend

so that it will be substantially extensible, and better performing. We are also investigating

the port of OpenJIT to other systems, including more modern VMs such as Sun's research

JVM (formerly EVM). In the due process we are investigating the high-level, generic API for

portable interface to VMs. The frontend requires substantial work, including speeding up its

various parts as well as adding higher-level programming interfaces. Dynamic loading of not

only the compilets, but also the entire OpenJIT system, is also a major goal, for live update

and live customization of the OpenJIT. We are also working on several projects using Open-

JIT, including a portable DSM system[SOM99], numerical optimizer, and a memory pro�ler

whose early prototype we employed in this work. There are numerous other projects that

other people have hinted; we hope to support those projects and keep the development going

for the coming years, as open-ended JIT compilers have provided us with more challenges

and applications than we had initially foreseen when we started this project two years ago.
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