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Abstract. We compute discrete convex hulls in 2D grey-level images,
where we interpret grey-level values as heights in 3D landscapes. For
these 3D objects, using a 3D binary method, we compute approxima-
tions of their convex hulls. Differently from other grey-level convex hull
algorithms, producing results convex only in the geometric sense, our
convex hull is convex also in the grey-level sense.
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1 Introduction

The notion of convexity is important in image analysis tasks, especially in shape
analysis. One tool that has been considered valuable for a long time is the convex
hull, defined as the smallest convex set including a given set [6]. The convex hull
can be used in a number of different applications. Two recent examples are: in
robotics for collision detection [7]; and in laminated manufacturing to enable
extraction of the object [5]. More general examples are found in [4, Ch. 11].

In most of the image analysis literature on convex hull computation, the orig-
inal sets considered are sets of isolated points or objects in binary images. Most
digital images are originally grey-level (or colour) images, and when creating a
binary image much information is lost. In many cases, that information loss is
serious and the end results not acceptable. Therefore, working on the original
grey-level image is preferable. A way to take grey-level information into account
while still using the methods developed for binary images, is to transform the
2D grey-level image into a 3D binary image, where for each image element the

J. Bigun and T. Gustavsson (Eds.): SCIA 2003, LNCS 2749, pp. 763-770, 2003.
© Springer-Verlag Berlin Heidelberg 2003



764 L. Nystrom, G. Borgefors, and G. Sanniti di Baja

grey-level value becomes the third co-ordinate. Binary image processing is usu-
ally simpler than grey-level image processing. This transformation is also used
in, e.g., grey-level morphology, where common operators are the top hat and the
rolling ball transformations [10],[4, Ch. 9.6].

Convex hulls found in literature are usually defined using continuous notions
and the result often a continuous set, rather than a discrete set, even when
working with digital imagery. We think it is desirable to keep the result in the
image domain.

In this paper, we present an algorithm for computing the 2D discrete grey-
level convex hull, by using a method that computes a sufficiently good approxi-
mation of convex hulls in 3D binary images [3]. This is a purely discrete approach
using small local operations, as opposed to, e.g., the Quickhull algorithm [1]. The
resulting convex hull and convex deficiency (i.e., the set difference between the
convex hull and the object) are both 2D grey-level images. These images contain
geometric and grey-level information, as both geometric (planar) concavities and
grey-level concavities (areas with lower grey-level than their surroundings) are
filled. In addition to shape analysis without thresholding, differentiating objects
with highly varying grey-levels from objects with smooth grey-level variation is
possible, e.g., by analysis of their grey-level convex deficiency. We apply the algo-
rithm when analyzing the structure of a paper sheet through confocal microscope
images within pulp and paper research.

The idea of grey-level convex hulls is not new. A previous algorithm is found
in [8,9]. This algorithm produces convex hulls where every plane parallel to the
original image plane contains only convex objects, but where a cut perpendicular
to this plane can contain concavities. It is thus a true convex hull only in the
geometric sense, not in the grey-level sense.

2 Background

Consider a binary image in Z™ containing object and background elements.

Definition 1. A digital convex set is a set of object elements in Z™ bounded by
a finite number of discrete half-spaces.

Definition 2. The convex hull of a set of object elements in Z™ is the smallest
convex set containing the original set.

Definition 3. The convex deficiency, or concavity regions, of a set of object
elements Z™ is the set of elements in the convex hull that are not members of
the original set.

In image analysis, quantitative description of the convex hull and the convex
deficiency of an object provides valuable information about geometric properties.
In practice, one is usually content by computing an approximation of the convex
hull of an object, e.g., a covering polygon/polyhedron. If the approximation is
reasonably good, so are the resulting measurements. Also, local operations can be
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used, which are fast and possible to parallelise easily. For example, in [4, Ch. 9.6]
the morphological algorithm given to compute 2D convex hulls computes the
smallest octagon containing the object.

We have previously presented a method for computing covering polyhedra for
digital volume objects, inspired by earlier work in 2D, see [2],[3]. The resulting
covering polyhedron is convex and is a good approximation of the convex hull of
the object. This method will be part of the present algorithm, see Section 3.1.

A 2D grey-level image is converted to a 3D binary image as follows. For each
pixel at position (z,y) with grey-level g, all voxels at positions (z,y,z) with
1 < z < g are set to object and all voxels at positions (x,y, z) with g + 1 < z < 255
and z = 0 are set to background. Because grey-level is not equivalent to height,
the correspondence between grey-level g and z value is not given, but depends on
the application. Linear scaling may be necessary. See Figures 1 and 2 for original
grey-level (a) and corresponding 3D representations (b). The inverse conversion
is straight-forward.

3 Computing the grey-level convex hull

3.1 Binary 3D convex hull computation

This Section is a brief version of [3]. We start with a binary 3D image with one
or more objects. Our covering polyhedra are built by “filling” local concavities,
i.e., by changing appropriate background voxels to object voxels. Local concav-
ities are defined by the number and the configuration of neighbouring object
voxels. Consider a border voxel, i.e., a background voxel having at least one
face-neighbour in the object. If it is located in a local concavity it is changed
to object. By iteratively filling local concavities the concavity regions are filled
globally:

1. Label the border voxels. For each border voxel the number of its object
face- and edge-neighbours are counted, separately in the z-, y-, and z-planes.
The three resulting sums, denoted X, Y, and X, are stored as a vector
label for the border voxel.

2. Include the border voxels satisfying the concavity criteria in the
object. Voxels with at least one X¢ >4, £ € {z,y, z}; and voxels with one
Y¢ = 4 having, in the same plane &, at least one neighbour with X¢ > 2, are
defined as being located in local concavities.

The larger the neighbourhood used to identify local concavities is, the more
half-spaces can be used for delimiting the covering polyhedron, and the better
the approximation of the convex hull will be. Here, simple 3 x 3 x 3 operators
are used, but curvature information is derived from a 5 x 5 x 5 neighbourhood.
The resulting covering polyhedron is convex and includes the convex hull. It can
have up to 90 faces. (If only information from a 3 x 3 x 3 neighbourhood were
used, the polyhedron could have at most 26 faces.) The difference between our
covering polyhedron and the convex hull is reasonably small, and the covering
polyhedron is good enough for most practical purposes.
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3.2 Grey-level concavity analysis

The grey-level concavity computation consists of the following steps. Convert
the 2D grey-level image f to a 3D “landscape”. Compute the convex hull of
this landscape. Project the convex landscape back to a 2D grey-level image g,
i.e., the grey-level convex hull. The grey-level convex deficiency is the difference
image h = g — f. The image h can of course also be represented as a landscape
during the process of analysis. All computed images are analysed according to
the specific application. More formally:

1. Convert 2D grey-level image f to 3D binary image.
2. Compute 3D convex hulls of objects in binary image according to method
in Section 3.1.
. Convert 3D convex hull image to 2D grey-level image g.
. Compute 2D grey-level convex deficiency image h.
. Convert h to 3D binary image.
. (a) Analyse 3D convex hull.
(b) Analyse 3D convex deficiency.
7. (a) Analyse 2D grey-level convex hull.
(b)

S O W

b) Analyse 2D grey-level convex deficiency.

4 Examples and comparison

The first set of images is a synthetic example, showing how our method performs
in the case of a geometric concavity. We start from a binary annulus with inner
radius 25 pixels and outer radius 50 pixels. The grey-level values are the dis-
tance values to the background (according to the 3-4 distance transform). The
maximum grey-level, and thus the maximum height, is 39. See Figure 1. Note
that the 3D representations have flat “bottoms”.

The next set of images is a real example, showing how our method performs
in the case of grey-level concavities. We start from a photograph of a face. The
illumination is uneven and there are also spots of dirt on the face that will
become filled in during the grey-level convex hull computation. See Figure 2.

The purpose of the last image example, taken from [8, 9], is to illustrate the
difference between our grey-level convex hull and the one computed by Soille,
see Figure 3, where both Soille’s and our convex hulls are shown. The difference
is clearest in the three profiles of the images (cuts perpendicular to the image
plane). Soille’s convex hull is not convex in this direction, while our is.

5 Discussion

This paper describes an algorithm using a purely discrete approach, based on a
method for 3D binary images, to compute 2D grey-level convex hulls. For good
results, some pre-processing by, e.g., grey-level closing, is generally needed in
most applications, due to the inherent noise in grey-level images. The resulting
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(a) Grey-level annulus (b) 3D annulus

(d) Grey-level convex (e) Grey-level concavi- (f) 3D concavities
hull ties

Fig. 1. Grey-level convex hull computation and analysis. (a) An annulus using distances
to the background as grey-levels. (b) The 3D representation of the annulus. (c¢) The
convex hull of (b). (d) The grey-level representation of (c). (e) The grey-level concavity
regions, i.e., (d)—(a). (f) The 3D representation of (e).
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(a) Bruce (b) 3D Bruce (c¢) 3D convex hull

(d) Grey-level convex (e) Grey-level concavi- (f) 3D concavities
hull ties

Fig. 2. Grey-level convex hull computation and analysis. (a) A photograph of a face.
(b) The 3D representation of the face. (¢) The convex hull of (b). (d) The grey-level
representation of (c). (e) The grey-level concavity regions, i.e., (d)—(a). (f) The 3D
representation of (e): the uneven illumination has been eliminated and the spots of
dirt shows quite well.
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(a) Original (b) Our convex hull (¢) Our concavities
(d) Soille’s convex hull (e) Soille’s concavities

(f) 1D profiles from (a), (b), and (d)

Fig. 3. Comparison of two methods for grey-level convex hull computation.
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convex hull approximations fulfill convexity in terms of geometric as well as grey-
level information, while other grey-level convex hull algorithms have focused on
geometric information. What is desired depends on the application.

An application we have in mind, is within pulp and paper research when
analyzing the structure of a paper sheet through confocal microscope images.
We obtain 2D grey-level images, where the grey-levels correspond to the depth
at which the first paper fibre is visible, i.e., how deep the pores penetrate into
the paper. It is of interest to study the structure of the surface under differ-
ent pressures to measure how the pores change. The pressure may be unevenly
distributed, a problem overcome by computing our grey-level convex hull.

Our current implementation of the algorithm first converts the 2D grey-level
images to 3D binary images. It is possible, for efficiency reasons, to implement
it directly for the 2D grey-level images.

The algorithm should extend quite easily to 3D grey-level images. Intuitively,
we then see the images as 4D binary images. Our idea is to use information
from the 3 x 3 x 3 x 3 neighbourhood for the 4D convex hull computations, but
performed as 3D computations.
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