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Nataša Sladoje1 �, Ingela Nyström1, and Punam K. Saha2

1 Centre for Image Analysis, Uppsala, Sweden
natasa@cb.uu.se, ingela@cb.uu.se

2 Medical Image Processing Group, Department of Radiology
University of Pennsylvania, Philadelphia, PA, USA

saha@mipg.upenn.edu

Abstract. To overcome the problems of low quality of image segmenta-
tion, as well as significant loss of the data, it seems promising to retain
the data inaccuracies as realistic as possible during the image analysis
procedures, instead of making hard decisions in the segmentation phase.
Such an approach initializes the interest for new image analysis meth-
ods, handling grey-level images. Our work on developing shape analysis
methods for fuzzy segmented images has resulted in a theoretical foun-
dation for estimators of quantitative properties of digitized objects with
fuzzy borders. In this paper, we present results of perimeter, area, and
compactness measure estimations obtained by applying a fuzzy approach
to digitized objects in low resolution real images.
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1 Introduction

Fuzzy segmentation methods have been developed in order to reduce the negative
effects of the loss of data in the digitization process, caused by crisp (hard)
segmentation of a grey-level image, see, e.g., [7]. In that case, instead of working
with a binary image, analysis is performed directly on a grey-level image, or on
its corresponding fuzzy segmented image.

As we are interested in estimating quantitative properties of fuzzy segmented
digital objects, we have developed a perimeter estimation method for fuzzy seg-
mented shapes. Empirical results for synthetic digitized objects, show that a
fuzzy segmentation provides more precise measures of area, perimeter, and com-
pactness (P 2A) than a hard segmentation. An increase of the resolution (by
itself), provides an improvement of the estimation results [3], both in fuzzy and
hard case. However, the increase of the precision of the estimation obtained by
taking a fuzzy approach is much more obvious for low resolution images.
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Our results for small synthetic objects, (i.e., objects digitized at low reso-
lution), are encouraging. We use these results to predict the behaviour of the
suggested method applied to real images.

Area, perimeter, and P 2Ameasure estimations obtained for circular objects of
known size, from (low resolution) grey-level images, are presented for mathemat-
ical and physical phantoms. They confirm reliability of the method. The method
is finally applied to estimate the area, perimeter, and compactness measure of a
cross-section of the aorta from a magnetic resonance angiography (MRA) image.

2 Background and Related Works

In this Section, a brief theoretical background for the estimation methods used
in this paper is given. They are derived in [8].

The area and perimeter of a digital fuzzy subset are defined with respect to
the definition of area and perimeter of a fuzzy subset in the continuous domain.
A fuzzy digital image is a fuzzy step subset, where iso-membership valued sets
are determined with respect to the connected sets of pixels having the same
grey-level. For the definition of a fuzzy step subset, see [1]. Definitions used:

Definition 1. [10] A fuzzy subset M of a reference set X ∈ Rn is a set of
ordered pairs

M = {(x, µM (x)) | x ∈ X},

where µM : X → [0, 1] is the membership function of M in X.

Definition 2. [6] The area A(M) of a fuzzy subset M of a reference set X,
given by its membership function µM , is

A(M) =

∫
X

µM (x)dx.

Definition 3. [6] The perimeter P (S) of a fuzzy step subset S, given by its
membership function µS, is

P (S) =
n+1∑
i,j=1

i<j

|si − sj| · l(Bij),

where si = µS(x) for x from the iso-membership valued set Si, and l(Bij) denotes
the length of a border line between two neighbouring iso-membership valued sets
of pixels, Si and Sj.

According to Definition 2, the area of a fuzzy digital object is calculated as the
sum of pixel values having their centroid within the object. The main result of [8]
is the perimeter estimator derived from Definition 3, by incorporating an efficient
estimator of the length of the border line, l(Bij), between two neighbouring iso-
membership valued sets of pixels, Si and Sj, having different grey-levels. For
that estimation we use a local approach, relying on measuring elementary moves
within the path l(Bij).
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Fig. 1. The 3× 3 neighbourhood of a pixel z5 in a 2D digital image.

We assume that, during a segmentation process, most of the image points
can be classified as either object or background, but that for some of the points
it is hard to make this discrimination. Such points are often located around
the border of an object. By determining the extent of their membership to the
object/background, the border of an object is defined as a fuzzy subset. We
compute the membership value of a pixel as a fraction of its area belonging
to the original object. The membership value of the pixels is equal to 1 in the
inner — “central” — region of the object, and “radially” decreases toward the
border. Pixels in the background have membership value 0. This allows us to
assume that the objects we work with fulfill the property that we call local fuzzy
convexity.

Definition 4. (Local fuzzy convexity property) A fuzzy digital object has a local
fuzzy convexity property if the 3× 3 neighbourhood of each pixel in the image is
a convex fuzzy subset. (For the definition of a convex fuzzy subset see, e.g., [9].)

Let the 3 × 3 neighbourhood of a pixel z5 be denoted as in Figure 1. To
compute the increase of the membership function, i.e., a measure related to the
gradient at z5, we calculate

dhor = max{µ(z6)− µ(z5), µ(z4)− µ(z5), 0},

dvert = max{µ(z2)− µ(z5), µ(z8)− µ(z5), 0},

and then assign

dmax = max{dhor, dvert} and dmin = min{dhor, dvert}.

The contribution per(z5) of the observed pixel z5 to the estimated perimeter is

per(z5) = dmin · b-step + (dmax − dmin) · a-step,

where a-step and b-step are the estimates (weights) of the isothetic and the
diagonal distance between two neighbouring pixels, respectively, see [2]. We use
an→∞MSE ≈ 0.948 and bn→∞MSE ≈ 1.343 for the a- and b-step weights [4]
to minimize the expected mean square error (MSE) for measurements of the
lengths of long line segments (n → ∞).

For small objects, the subtraction of an appropriately chosen constant value
from the estimated perimeter compensates for the over-estimation caused by
digitization. We have determined the correction factor ccorr as the difference
between the mean estimated perimeter value of 10, 000 (hard) disks of radius
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1 pixel, randomly positioned in a grid, and the real perimeter value of a disk of
the same size, which gives ccorr = 0.689078.

We compute the perimeter of a fuzzy segmented digitized object S by using
the following equation

P (S) =
∑
z∈I

per(z)− ccorr, (1)

where per(z) is the contribution to the perimeter of any pixel z in the image I.

3 Results for Fuzzy Segmented Images

The purpose of this paper is to report on area and perimeter estimations when
the methods suggested in [8] and described above are applied to fuzzy segmented
images. The P 2A compactness measure, determined as

P 2A(S) =
perimeter2(S)

4π · area(S)
,

is also estimated. Our intention is to show that our perimeter and area esti-
mates provide high resemblance of binary and continuous objects, regarding
isoperimetric inequality, (perimeter(S))2 ≥ 4π · area(S).

3.1 Mathematical phantoms

Tests are done for 6, 800 randomly positioned disks (the centres are uniformly
distributed over the unit pixel area), 100 for each of 68 real-valued radii up to
20 pixels, while different sub-sample factors (1, 4, 8, and 16), corresponding to
different levels of fuzziness, are used. The sub-sample factor 1 corresponds to
hard segmentation. For each size and sub-sample factor, we determine the mean
of the estimated values, as well as maximum and minimum estimates. The results
are presented in Figure 2. For more details, see [8], where the estimation results
for other shapes are presented as well. Here, we will give the conclusions.

The common property of estimates based on a hard segmentation is their
rather low precision for small objects. By introducing fuzziness in the segmen-
tation procedure, much better results, in terms of precision, are obtained. For
disks of radius 5 pixels, the maximal error for the area estimation is reduced from
4% (in the hard case) to 0.3% (if fuzzy segmentation with sub-sample factor 8 is
used), while the maximal error for the perimeter estimation (Eq. 1) of such disks
is reduced from 6% (hard) to 3% (fuzzy). For the P 2A measure estimation, the
values obtained for fuzzy segmented objects are not only precise, but never less
than 1, which is in accordance with the well-known property of the continuous
circles, but does not hold for hard segmented digitized objects.
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Fig. 2. Measurements of disks randomly positioned in a grid. Top: Area estimation
results for very small disks. Bottom: Perimeter estimation results for small disks.

3.2 Physical phantoms

We acquired images of holes made by a perforator in a piece of blue paper by
using an ordinary scanner set at resolutions 75–200 dpi. The true diameter of
the holes is 5.9 mm. By choosing the red band of the original colour image, we
get a light circular object on a dark background, while the border of the object
is not strictly defined as dark or light, but fuzzy segmented, see Figure 3(a, b).

Only a few processing steps are needed to obtain objects that fulfill the
conditions for the perimeter estimation method [8]. By grey-level thresholding,
we define the inner region, containing pixels set to the maximal value (i.e., having
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Fig. 3. (a), (b) Circular objects extracted from the original image (resolution 100 dpi).
(c), (d) Fuzzy segmented objects obtained from (a) and (b).

membership value 1), and background region, containing pixels set to 0 as their
membership to the object. The border points are set to values proportional to
their grey-level. Local convexity is checked for. Example images are presented in
Figure 3(c, d). The perimeter, area, and P 2A measure estimations, presented in
Table 1, are very encouraging.

Table 1. Perimeter (mm), area (mm2), and P 2A estimations of circular objects with
fuzzy border, obtained from the images scanned at different resolutions (75–200 dpi);
percentual errors (Per. Error and Area Error) are also given.

objectdpi Radius Perimeter Per. Error Area Area Error P2A

real object 2.95 mm 18.54 — 27.34 — 1.00

object175 ≈ 8 pixels 18.89 1.92 27.91 2.06 1.02

object275 ≈ 8 pixels 18.81 1.51 27.91 2.09 1.01

object1100 ≈ 11 pixels 18.89 1.92 28.23 3.27 1.01

object2100 ≈ 11 pixels 18.97 2.32 28.05 2.60 1.02

object1150 ≈ 17 pixels 18.83 1.59 27.96 2.27 1.01

object2150 ≈ 17 pixels 18.85 1.70 27.88 1.94 1.02

object1200 ≈ 22 pixels 18.74 1.10 27.53 0.68 1.02

object2200 ≈ 22 pixels 18.83 1.59 27.51 0.61 1.03

We conclude that all estimations are rather accurate and in reasonably good
accordance with the theoretical results. In this case, where the fuzziness is defined
in proportion to the grey-levels of the digitized real image, the percentual errors
are just slightly larger than for the synthetic images of the disks where the fuzzy
border is defined by using area coverage.
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Fig. 4. (a) 512×180 pixel cross-section of a (3D) MRA image. (b) Extracted subimage
containing aorta, the bright circular object. (c) Fuzzy segmented aorta.

3.3 Real objects

Finally, we applied the proposed estimation methods to a real object from a mag-
netic resonance angiography (MRA) image of the human abdomen, a 512× 180
cross-section of the aorta with pixel size 0.78125mm, see Figure 4(a). After some
pre-processing steps, including grey-scale morphological operations, and thresh-
olding to define inner and outer region, we obtained a locally convex circular
object with a fuzzy border, see Figure 4(b). In this case, the border is rather
thick, since making a hard decision in defining the object is difficult.

The estimation results are EstPerimeter = 40.49 mm, EstArea = 128.51
mm2, and EstP 2A = 1.06. This corresponds to approximately 12.8 mm in di-
ameter, which is quite reasonable for the aorta at this level [5] (from an 11-year
old child).

Our main goal is to show that our perimeter estimation method (and also
area and compactness estimation methods) can be applied to such “vaguely”
defined objects. Here, we have used a fuzzy membership function which can be
easily and naturally derived from grey-level images obtained by many imaging
techniques; the membership values are proportional to the area coverage, which
we also used in our theoretical study.
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4 Conclusions

Defining (the border of) a digitized object as a fuzzy subset seems to be very
promising, considering estimates of quantitative properties of the original object.
Results of the estimation of area, perimeter, and P 2A (compactness) measure,
for synthetic locally convex objects are generally improved when the membership
of a digital point to a set is allowed to be not just 0 or 1, but also values be-
tween these two extrema. This approach significantly improves the estimations,
as compared to the hard segmentation, in the case of low resolution images.

Application of the proposed estimation methods to real images shows that the
approach of retaining fuzziness in the object border provides a simple and natural
segmentation method when hard decisions about the object definition would
be difficult to make. The MRA image used in this paper, and medical images
obtained by other devices, contain objects that can be defined as locally convex
objects with fuzzy borders. The high precision and accuracy of the presented
estimation results make us confident that the theoretical results derived in [8]
can be efficiently applied to a wide range of real images.
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