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Abstract. The contribution of this paper is the adaption of data driven
methods for decomposition of tangent shape variability proposed in a
probabilistic framework. By Bayesian model selection we compare two
generative model representations derived by principal components ana-
lysis and by maximum autocorrelation factors analysis.

1 Introduction

For the analysis and interpretation of multivariate observations a standard method
has been the application of principal component analysis (PCA) to extract la-
tent variables. Cootes et al. applied PCA to the analysis of tangent space shape
coordinates [1]. For various purposes different procedures for PCA using non-
Euclidean metrics have been proposed. The maximum autocorrelation factor
(MAF) transform proposed by Switzer [2] defines maximum spatial autocorre-
lation as the optimality criterion for extracting linear combinations of multi-
spectral images. Contrary to this PCA seeks linear combinations that exhibit
maximum variance. Because imaged phenomena often exhibit some sort of spa-
tial coherence spatial autocorrelation is often a better optimality criterion than
variance. We have previously adapted the MAF transform for analysis of tan-
gent space shape coordinates [3]. In [4] the noise adjusted PCA or the minimum
noise fraction (MNF) transformations were used for decomposition of multispec-
tral satellite images. The MNF transform is a PCA in a metric space defined
by a noise covariance matrix estimated from the data. For image data the noise
process covariance is conveniently estimated using spatial filtering. In [5] the
MNF transform is applied to texture modelling in active appearance models [6],
and in [7] to multivariate images in extracting a discriminatory representation.
Bookstein proposed using bending energy and inverse bending energy as metrics
in the tangent space [8]. Using the bending energy puts emphasis on the large
scale variation, using its inverse puts emphasis of small scale variation.

2 Methods

In the following two Sections we will describe how to use two methods, maximum
autocorrelation factors [2] and minimum noise fractions [4], for decomposing the
tangent space coordinates of a set of shapes into a low-dimensional subspace.
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The tangent space coordinates are obtained by a generalized Procrustes align-
ment [9, 10] followed by a projection of the full Procrustes coordinates into the
tangent space to the shape space at the full Procrustes mean (e.g. [11]). Let the
tangent space coordinates, xi = (xi11, . . . , xi1n, . . . , xid1, . . . , xidn)T , for shapes
i = 1, . . . , p with j = 1, . . . , n landmarks in d ∈ {2, 3} dimensions be organised
in a p × dn data matrix X = [x1 x2 . . .xp]T . Denote the Procrustes (sample)
mean shape x̄ and let it be centered on (0,0) in 2D and (0,0,0) in 3D, further let
the origin of the tangent space coordinate system be the mean shape, then X
is doubly centered, i.e. columns as well as rows sum to zero. Additionally, it is
assumed that the landmarks are sampled on curves (in 2D) and surfaces (in 3D)
that allow for definition of neighbouring landmarks, i.e. in terms of the order
along a curve or through a triangulation of landmarks on a surface.

In the following we will consider Q-mode analyses of the matrix X. In the
case of principal components analysis this is an eigenvalue decomposition of the
covariance matrix estimated from observations zlj = (x1lj , . . . , xplj)T , for j =
1, . . . , n, l = 1, . . . , d. These zlj are vectors of a landmark coordinates observed
over the set of shapes. The maximum likelihood estimator of the covariance
matrix is

Σ̂ =
1
p
XXT = V Λ2V T

here Λ2 is a diagonal matrix containing the eigenvalues of Σ̂, and V contains the
corresponding conjugate eigenvectors. A point distribution model then consists
of retaining the t ≤ r first principal components. Deviations from the Procrustes
mean (in tangent space) can then be modelled by

x =XTV ′b (1)

where V ′ is a matrix consisting of the first t columns of V , and b defines a set
of t parameters of the deformable model.

2.1 Maximum autocorrelation factors

Let the spatial covariance function of a multivariate stochastic variable, Zk,
where k denotes spatial position and∆ a spatial shift, be Γ (∆) = Cov{Zk,Zk+∆}.
Evidently Γ T (∆) = Γ (−∆). Then by letting the covariance matrix of Zk
be Σ and defining the covariance matrix Σ∆ = D{Zk − Zk+∆}, we find
Σ∆ = 2Σ − Γ (∆) − Γ (−∆) where Σ∆ is the dispersion of the difference pro-
cess in lag ∆. We are now able to to compute the covariance between a linear
combination of the original variables and the shifted variables

Cov{wTZk,w
TZk+∆} =

wTΓ (∆)w =
1
2
wT (Γ (∆) + Γ (−∆))w = wT (Σ − 1

2
Σ∆)w. (2)

Thus the autocorrelation in shift ∆ of a linear combination of Zk is

Corr{wTZk,w
TZk+∆} = 1− 1

2
wTΣ∆w

wTΣw
= 1− 1

2
R(w). (3)
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In order to maximize this correlation we must minimize the Rayleigh coefficient,
R(w). This is obtained by choosing as w the conjugate eigenvector correspond-
ing the smallest generalized eigenvalue of Σ∆ wrt. Σ. The MAF transform is
given by the set of conjugate eigenvectors of Σ∆ wrt. Σ, W = [w1, . . . ,wm],
corresponding to the eigenvalues κ1 ≤ · · · ≤ κm [2]. The resulting new uncorre-
lated variables are ordered so that the first MAF is the linear combination that
exhibits maximum autocorrelation. The autocorrelation of the ith component is
1− 1

2κi. We assume first and second order stationarity of the data.
One problem now arise, namely, how should we choose ∆. Switzer suggests

that we estimate Σ∆ for a shift in lag 1. Blind source separation by independent
components analysis using the Molgedey-Schuster (MS-ICA) algorithm [12] is
equivalent to MAF [3]. The purpose of this algorithm is to separate independent
signals from linear mixings. MS-ICA does this by exploiting differences in auto-
correlation structure between the independent signals. Kolenda et al. [13] use an
iterative procedure for identifying the optimal lags based on the sum of pairwise
absolute differences between the autocorrelations of the estimated independent
components. In this study we use Switzers original suggestion. This is based on
the assumption that the noise is separated from the interesting latent variables
in terms of autocorrelation already in lag 1. For shape analysis decomposition
of the datamatrix X using MAF is carried out in Q-mode. In 2D the difference
process covariance matrix Σ∆ is estimated from the lag 1 difference process of
landmarks along the contours of the object. In 3D we estimate the difference pro-
cess covariance matrix from the differences between the landmark coordinates
and a plane fitted to the landmarks in a kth-order neighbourhood.

2.2 Minimum noise fractions

As before we consider a multivariate stochastic variable, Zk. We assume an
additive noise structure Zk = Sk + Nk, where Sk and Nk are uncorrelated
signal and noise components, with covariance matricesΣS andΣN , respectively.
Thus Cov{Zk} = Σ = ΣS +ΣN . By defining the signal-to-noise ratio (SNR)
as the ratio of the signal variance and the noise variance we find for a linear
combination of Zk

SNRi =
V {wT

i Sk}
V {wT

i Nk} =
wT
i ΣSwi

wT
i ΣNwi

=
wT
i Σwi

wT
i ΣNwi

− 1. (4)

So the minimum noise fractions are given by the set of conjugate eigenvectors
of Σ wrt. ΣN , W = [w1, . . . ,wm], corresponding to the eigenvalues κ1 ≥ · · · ≥
κm [4]. The resulting new variables are ordered so that the first MNF is the
linear combination that exhibits maximum SNR. The ith MNF is the linear
combination that exhibits the highest SNR subject to it being uncorrelated to
the previous MNFs. The SNR of the ith component is κi − 1. If the matrices
in Equations (3) and (4) are singular the solution must be found in the affine
support of the matrix in the denominator, e.g. by means of a generalized singular
value decomposition.
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2.3 Evaluation of point distribution models by probabilistic
reconstruction

Following Minka [14] we use a probabilistic principal components analysis model
for choice of dimensionality. Let a multivariate response X of p dimensions be
modelled by a linear combination of a set of basis vectors hi, i = 1, . . . , k plus
noise

X =
k∑

i=1

hibi +m+N =Hb+m+N (5)

where N ∈ N(0,ΣN ), and b has dimension k < p. The vector m defines the
mean of X, while H and ΣN defines its variance. For PCA the noise variance
is spherical, i.e. ΣN = vIp. Furthermore, we assume a spherical Gaussian prior
density for b, b ∈ N(0, Ik). For this model the maximum likelihood estimators
for the model parameters given observations xi, i = 1, . . . , N are

m̂ =
1
N

N∑

i=1

xi, Ĥ = Uk(Λk − v̂Ik)1/2R, v̂ =
1

p− k
p∑

i=k+1

λi. (6)

Where Uk contains the eigenvectors corresponding to the top k eigenvalues of
the maximum likelihood estimate of the dispersion matrix of the observations
Σ̂ = 1

N

∑N
i=1(xi−m̂)(xi−m̂)T , λi is the ith eigenvalue of Σ̂, the diagonal matrix

Λk contains the corresponding eigenvalues, and R is an arbitrary orthogonal
matrix. The likelihood of the data, D, thus becomes

p(D|H,m, v) =
(2π)−Np/2|HHT + vI|−N/2exp(−1

2
tr((HHT + vI)−1NΣ̂)). (7)

Let us instead assume a general unrestricted covariance structure of the noise,
which may contain intercorrelated effects. Then it is fairly easily shown that by
an initial linear transformation that diagonalises ΣN , using the result above,
that the maximum likelihood estimate of H consists of the first k minimum
noise fraction factors (cf. Eq. (4)). For a given model the loglikelihood (LL)
of the data can be estimated. However, with ever increasing model complexity,
better reconstruction of the data is obtained, and thus a corresponding increase
in LL is observed. The LL estimates must therefore be penalized e.g. by using
the Bayesian information criterion (BIC) or Akaikes information criterion (AIC).
Given the probability of the data and the degrees of freedom in the model, then
BIC and AIC reduce to

BIC = −2 log(p(D|H,m,Σn)) + (k + 1)p log(N), (8)
AIC = −2 log(p(D|H,m,Σn)) + 2(k + 1)p/N. (9)

In order to avoid the bias introduced by estimation parameters and evaluating
performance on the same dataset we may apply cross validaion (CV). Let the
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variance of the isotropic noise in the model complement subspace λe be estimated
by the average variance not explained by the model, let Λ be a diagonal matrix
of the variance λi, i = 1, . . . , k in the corresponding orthogonal subspaces of H ,
and let λi = λe, i = k+1, . . . , p. Let rmj represent the jth excluded observation
projected into the model space given by HT (xex,j −m), and rej the residuals
in the complement space given by (I − HHT )(xex,j −m). In this case the
loglikelihood of the data on an orthogonal affine model support H is given by

LL = −1
2
(nex(p log(2π) +

p∑

i=1

log(λi)) +
nex∑

j=1

(rTmjΛ
−1rmj + λ−1

e rTejrej)) (10)

where nex is the number of observations in the excluded CV set.

3 Results

We demonstrate the properties of the techniques that we propose on a dataset
consisting of 2D annotations of the outline of the right and left lung from 115
standard PA chest radiographs. The chest radiographs were randomly selected
from a tuberculosis screening program and contained normal as well as abnormal
cases. The annotation process was conducted by identification of three anatomi-
cal landmarks on each lung outline followed by equidistant distribution of pseudo
landmarks along the 3 resulting segments of the outline. In Fig. 1(b) the land-
marks used for annotation are shown. Each lung field is annotated independently
by two observers [15].

In Fig. 2 results of a five-fold CV study of the loglikelihood is shown. The fig-
ure shows the average performance of the generative PCA and MAF models and
the one standard deviation bounds for a given model complexity. For the PCA
based model the LL analysis attains its maximum at 18 dimensions, whereas the
MAF has its maximum at 30 dimensions. Truncation of the models is typically
obtained by tracking the lower one standard deviation bound backward, leading
to model complexities of 13 and 22 dimensions for respectively the PCA and
the MAF analysis. Although the MAF basis indicates a higher rank model, it is
important to note that it finds uncorrelated modes of biological variation in a
non-Euclidean metric. The modes may thus provide a better separation of sig-
nal from noise, and typically the MAF components possess better discriminatory
power over the traditional PCs. Fig. 3 shows the most important PCA and MAF
components derived from an analysis on all the training data.

4 Conclusion

We have demonstrated data driven methods for PCA and MAF decompositions
of tangent space shape variability, and provided a probabilistic framework for
selecting the best model and regularization. In our case study PCA performs best
in deriving a compact low dimensional model. However, the fact that the MAF
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Fig. 1. Landmarks of the left and right lung. Landmark numbers are shown in the
middle. The right lung is annotated by 40 landmarks, and the left lung by 36. The
anatomical landmarks on the right field are points 1, 17, and 26, on the left field
the anatomical landmarks are points 1, 17, and 22. (a),(c) Inter-observer difference
canonical correlations between landmarks for the right and left lungs. (d),(e) Inter-
neighbour landmark difference canonical correlations between landmark for the right
and left lung.

analysis expands into a higher rank representation is not necessarily undesirable.
In fact the higher dimensional MAF model attains comparable capability in
generalizing to the data. In effect, it provides a more detailed image of the signal
present in the data in probing for uncorrelated biological modes of variation.
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