Supervised Segmentation of Volume Textures
Using 3D Probabilistic Relaxation

Matthew Deighton! and Maria Petrou':2

1 School of Electronics and Physical Sciences, University of Surrey,
Guildford, GU2 7XH, UK. http://www.ee.surrey.ac.uk/CVSSP/index.html

2 The Intstitute of Telematics and Informatics, EKETA,
PO Box 361, Thermi, Thessaloniki, Greece. petrou@iti.gr

Abstract. An iterative 3D probabilistic relaxation scheme has been de-
veloped for assigning labels to voxels based on the probabilities that the
voxel belongs to each one of a number of known classes. The approach
takes account of the probabilities of the neighbouring voxels belonging
to each class and of the likely configurations of those labels within the
neighbourhood. We apply the approach to the supervised segmentation
of a seismic volume. In the example, the probability that a voxel belongs
to each class is provided by the application of gradient operators and sta-
tistical measures. The iterative relaxation scheme then assigns the most
appropriate label to each voxel.

1 Introduction

Volumetric data are now more widespread than ever before. Medical imaging
techniques such as MRI and PET routinely generate data of this form along
with other fields such as seismic imaging of the Earth’s crust. Often, the aim
of collecting the data is to identify distinct objects or regions within a volume
based on some attribute and relate it to the real world. Visualising the data in
such a way to allow a human operator to carry out this task is difficult. A com-
mon approach is to first segment the volume to allow better representation of
the regions of interest for visualisation purposes. Initially, 2D image processing
techniques were applied to individual slices from the data. However, as comput-
ing power has increased, the data are coming to be treated as a volume. This
has driven the extension of many 2D techniques to 3D and the generation of new
volumetric methods.

Nikolaidis and Pitas in [1] give illustrations of a number of techniques in this
area, including filtering, 3-D DFT, segmentation, edge detection and registration.

In this paper, we propose a technique for supervised segmentation based on
the texture in the neighbourhood of a voxel, using probabilistic relaxation.

2 Methodology

Kovalev et al [2] proposed the Gradient Density (GD) method as a global texture
descriptor. They constructed the 3D orientation histogram of the gradient vec-
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tors of all the voxels of the texture and extracted features from this histogram.
We apply this method here in a 3D neighbourhood around each voxel and extract
features that are assigned to the central voxel. Our features correspond to those
used in [2]; namely anisotropy measure, integral anisotropy measure and local
mean curvature. We extend the feature set to also include skew and kurtosis.
On the basis of the values of these five features the central voxel is assigned a
similarity value with one of the texture classes in the database of textures we
are interested in segmenting the image into. The similarity measure is computed
as

N
1 |Fkn_an|
Sip=1-> =t 1

where N is the number of features extracted from the 3D orientation histogram,
F}.,, is the nth feature value computed from the kth model texture in the library
of textures we have, Fj, is the nth feature value computed from the neighbour-
hood around voxel i. The values of S;, are in the range [0, 1] and so they can
be used as initial probabilities with which voxel ¢ may be assigned to class k.
This similarity measure considers each voxel separately, and it does not take into
consideration the labels of neigbouring voxels. Such labelling methods may be
locally optimal, but globally inconsistent. We propose to use probabilistic relax-
ation to assign the most probable label to each voxel, given its texture properties
and those of its neighbouring voxels.

Our 3D method closely follows the formalism of Mirmehdi and Petrou [3],
who developed a probablistic segmentation scheme for 2D images.

Let us call z; the measurement associated with the ith voxel of a data set,
with¢ =1,..., N where N is the number of voxels in the data set. For clarity we
define two sets, Ng and N; such that No = {1,2,...,N} and N; = {1,2,...,i —
1,i+1,...,N}

A label set 2 is defined such that 2 = {w1,...,wmn} where m corresponds
to the number of classes to which the data are to be segmented. Each voxel is
assigned a label #; which can take any of the values from the set 2.

Our aim is to select the most probable label 8; for each voxel ¢, by considering
all the information available. This can be formalised by

0; = arg {m}g}x Po; = Wk|$j’j€]v0)} (2)

Using Bayes rule, we can re-write the conditional probabilty of a particular label
assigned to a particular voxel as

P(H, = wk,xj,jeNo)
P(zj,jen,)

3)

P(0; = wil|zjjen,) =

After some lengthy manipulations, this equation can be writtn as
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P(0, = wk\x,)Q(é’z = wk)
PY; = i ieNy) = 4
( Wil ), jeNs ) ZP(Gi = |20 (0 = wa) (4)

where function Q(6; = ws,) expresses the support a particular label for the voxel
in question receives from all other voxels. It is given by

Q(ei = wa) =
ZZ E~~~ZHP(Gj=w9j|9:j)P(t91zwol,...,t%:wa,...,GN:ng) (5)
we, We;_1 We;t1 won JEN:

From (5), we observe that the Q(; = wqs) factor involves summing over all
possible label configurations of all voxels in the data. If we assume that we have
a mere 1000 voxels and 4 possible labels, the configurations over which we have
to sum are 400, This is clearly impratical.

Factor P(01 = wg,,...,0; = Wqa,...,0N = wsgy) in (5) however, can help as it
expresses the joint probability for each one of those label configurations to exist.
Most of the label configurations are very unrealistic and we can assign them
zero probability of existing. In addition, we realise that when we concentrate
our attention to voxel i, the labels that matter are the labels of its immediate
neighbours, while all other voxels could have any label they like, with virtually
no influence on voxel i. We group therefore all possible configurations of labels to
a few “classes”®, each “class” being characterised by the combinations of labels
around voxel . If we restrict our attention to a neighbourhood of 3 x 3 x 3 voxels
around voxel 4, we have 26 voxels whose labels matter. With 4 possible labels,
the number of configurations is still huge: 427. However, most of these “classes”
are unrealistic and they can be given zero joint probability to exist. In addition,
“classes” of configurations that involve more than two labels in the 3 x 3 x 3
neighbourhood around a voxel are extremely rare. Without introducing much
error, we can assume that these “classes” also have zero probability to exist.
Then we may assemble a dictionary of allowable configurations around a voxel,
assuming that, at most, two different labels will be present there.

The entries of this dictionary are created using common sense and the under-
standing that by and large, the world is smooth. We show the various allowable
options of 3D 2-label configurations in figure 1. Most of these options represent
multiple cases which can be generated by considering all possible symmetries of
a 3 x 3 x 3 cube. Note that each such configuration represents a whole “class” of
possible labellings of the whole data cube, as for each entry in the dictionary the
voxels outside the 3 x 3 x 3 volume are allowed to have all possible combinations
of labels they can take.

We assume that all “classes” of configurations are equally probable and so
we can write

3 We use the term “class” here to distinguish it from the term class which refers to
the labels we assign to each voxel during the classification process.
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x1

Fig. 1. Dictionary of configurations for Q-Function. There are 27 entries in the dictio-
nary and 6 label pairs for the 4 label problem, with each label combination appearing
twice: white-black and black-white. This gives a total of 324 possible combinations.

0 if Wa, Wj,5€8; D
{ ( es:) ¢ -

P(91:wgl,‘..,e,-:wa,...,aN:ng): 2 otherwise
S

where S; is the 3 x 3 x 3 neighbourhood around voxel i, (wq,wj, jes;) = £2g; is the
combination of labels of this neighbourhood according to the assignment (6, =
Wy sy 0i = Way-.., 0N = woy), D is the dictionary of allowable combinations
of labels for the 3 x 3 x 3 neighbourhood and S the total number of entries in
the dictionary. We see that (5) then becomes

Qi =wa) = > ] P; =ws,lz)) (7)

Qs,€D jeS;

Having ignored the state of all other labels apart from those in the immediate
neighbourhood of a voxel when we label it, and having done that for each voxel
as if it were on its own, we may not produce a globally consistent labelling.
Each voxel was allowed to be influenced by its neighbours and those by their
own neighbours and so on. We may now correct for the gross classification of all
possible labellings in a small number of “classes” by repeating the process in an
iterative scheme. (4) and (7) now become

(9, = ) = L0 = 9)Q"(0: = i) ®

NP0 = wp, ) Q6 = wp,)

Q (Vi =wa) = >_ [[ P"6; =we,) (9)

0% €D jeS;

For n = 1 the probabilities with which each voxel is assigned each one of the
possible labels are given by the similarity measure we computed using equation

(1).
3 Experiments

3.1 Analysis of the Problem

Figure 2 shows our test volume of interest and figure 3 shows the texture classes
to which the test volume is to be segmented. Note that the texture classes of
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figure 3 have not been extracted from the test data. They are samples taken from
a publically available seismic survey of the Barents Sea originally conducted by
Shell. These volumes contain textures corresponding to geologically meaningful
classes identified by highly trained interpreters.

Fig. 2. Test volume

(a) Parallel (b) Sub- (c) Sub- (d) Chaotic
parallel, low parallel, high
discontinuity discontinuity

Fig. 3. Regions of interest

Figure 4 shows some slices from the test volume with the initial probabilities
produced from the texture similarity measure, one output per texture class. The
brighter the grey value in the display, the more probable it is that the voxel
belongs to the indicated class.
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Figure 5(a) shows the same slice segmented with each voxel given the label of
the highest similarity. We see that this segmentation is not very “clean”, in the
sense that it does not produce volumes the shapes of which may be described
in a meaningful way. Applying probabilistic relaxation produces a much cleaner
segmentation. Figure 5(b) shows the same slice segmented after 40 iterations of
the probabilistic relaxation scheme.

150 200 250

150 200 250 300

(a) Parallel (b) Sub-para, LD

(c) Sub-para, HD (d) Chaotic

Fig. 4. Slices from Barents test volume similarity cubes; white - high similarity, black
- low similarity
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(a) Highest similarity (b) 40 iterations

Fig. 5. Centre slices from label cubes. Black - parallel; dark grey - sub-parallel, low
discontinuity; light grey - sub-parallel, high discontinuity; white - chaotic.

4 Discussion and Conclusions

We have shown how a texture measurment scheme can be combined with prob-
abilistic relaxation to provide a clean volumetric segmentation with a seismic
data example. Producing clean texture volumes is very important for the fur-
ther analysis of seismic datacubes, because it allows us to identify geologically
meaningful structures on the basis of their texture and shape. The probabilistic
relaxation scheme is very slow, but given that such volumes usually take months
to be analysed by geologists, a few hours of processing time that helps them
identify the geologically meaningful regions automatically is not a significant
drawback.
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