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Abstract. This paper presents a method for extracting multiple motion trajecto-
ries in human motions. We extract motion trajectories of body parts (hands and
feet) using a new method based on optical flow information. This procedure is
not sensitive to complicated backgrounds or color distribution of scenes. No body
part model or skin color information is used in our method. We first detect Signifi-
cant Motion Points (SMPs) and obtain motion trajectories by connecting related
SMPs through frames using Modified Greedy Optimal Assignment (MGOA)
tracker based on the distance, motion similarity, and optical flow information. We
test our approach on actual ballet sequences from videos. The resulting trajectories
can be used as potential features for activity recognition.

1 Introduction

Activity recognition has been attracting many researchers’ interest in computer vision
area because it can be applied to many video content analysis applications. Motion
trajectories of body parts can be effective features for recognition of activities especially
when significant body parts’ movements are involved.

In this paper, we propose a new method for extracting motion trajectories of body
parts. Some previous works on extracting motion trajectories are discussed first, and
then an outline of our approach is presented.

1.1 Previous Works

Many approaches to locate human body parts in video sequences have been described
in the literature. One of them is a body part labeling method based on appearance [11].
In this approach, body silhouettes are classified into possible postures which is followed
by geometric reasoning of body parts. The location information of the body parts is
temporally integrated to obtain better performance. A probabilistic model to fuse color
and motion has been used to localize the body parts (hands and faces) in another approach
[12].

Body parts trajectories have been used as one of the important features for action
recognition. It has been the most important feature especially for gesture recognition. A
state-based approach has been adopted to represent and recognize gestures [10]. Motion
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trajectories are extracted from magnetic sensors and eigen templates of hand images
in this method. There is the HMM-Based threshold model approach for hand gesture
recognition [6]. Skin color is used to locate hands in this approach. Body parts trajectories
are used also to classify gait [7]. Head, trunk, and legs are tracked to extract trajectories,
and a statistical approach for modeling individual body parts with static background is
used for that purpose. Motion segmentation is employed to extract motion trajectories
[5]. After motion segmentation, dominant moving regions are extracted using color and
geometric information. To get continuous trajectories, the affine transformations of these
regions are concatenated.

(a) (b)

Fig. 1. (a) Optical Flow (b) Detected Significant Motion Points (SMPs)

1.2 Our Approach

In our approach, multiple motion trajectories of body parts are extracted from action
sequences. To extract motion trajectories, we only use optical flow information. Many
previous works depend on the skin color to locate hands and face. But skin color-based
method cannot be applied to other body parts.And if background is complicated or similar
colors are present in the scenes, this method cannot be stable. Human body models were
also used to track body parts in previous works. These methods are affected by the type
of clothing a person wears. But with optical flow, complicated backgrounds or color
distribution of the scenes are not likely to cause any problem. No body model is used in
this method. One other advantage of this approach using optical flow is that it can extract
trajectories from the sequence with camera movement. No initialization for body parts
tracking is needed which is another advantage.

After we get Significant Motion Points(SMPs) (Fig. 1) with optical flow informa-
tion, we connect these points and get motion trajectories. To connect related Significant
Motion Points(SMPs) and result in motion trajectories, we employed Greedy Optimal
Assignment (GOA) Tracker [1] which is one of the approaches used to solve motion
correspondence problem. We modified this tracker to meet our purpose.

Using the Modified Greedy Optimal Assignment Tracker, false alarms are removed
and consistent movements are connected to result in motion trajectories. In Section 2,
we describe how we extract motion trajectories using optical flow information. Section
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(a) (b) (c)

Fig. 2. (a) Active Regions (b) Labeling Active Regions (c) Maximum Regions

3 discusses the data and results of our experiments. Conclusions will be followed in
Section 4.

2 Extraction of Motion Trajectories

2.1 Locating Significant Motion Points

To get optical flow from images, we used the robust gradient-based optical flow algorithm
[13]. An image is divided into N1 × N2 non-overlapping regions (Fig. 2). For each
region, the average size of the optical flow is calculated. If this number is greater than
the threshold value T1 and this region is one of the top T2% of regions which have the
largest average size of optical flow, it is marked as an active region (see Fig. 2 (a) ). After
this procedure is applied to every region, active regions are labeled as different numbers
based on the connectivity (Fig. 2 (b)). Any active region that has a greater average size
of optical flow than all other active regions in neighborhoods is marked as a maximum
region (Fig. 2 (c)).

For each maximum region, the point which has the largest 3x3 local average size of
optical flow is found and marked as a Significant Motion Point (SMP ) (Fig. 1(b)). But if
any two SMPs belong to same active region based on labeled number, the distance and
optical flow similarity between those points are calculated. If the distance is less than
a threshold value and they have a similar optical flow direction at those points, one of
these two points which has the smaller 3x3 local average size of optical flow is removed
from SMPs.

2.2 Generating Motion Trajectories

To assign each Significant Motion Point (SMP ) to a related trajectory, we employed
Greedy Optimal Assignment (GOA) tracker [1]. Using this tracker, trajectories of fixed
number of moving points can be found while allowing track continuation after point oc-
clusion and missing detections. But track initiation and termination should be supported
to generate motion trajectories of body parts. Therefore, we modified GOA tracker to
support track initiation and termination as well as track continuation.

The original Greedy OptimalAssignment (GOA) tracker can be described as follows.
There are M moving points, pi, in the scene. The number of moving points, M , is fixed
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(a) (b)

Fig. 3. The input sequence and resulting trajectories (a) two hands (b) right leg

through the sequence. Therefore, no new moving point can enter the scene, nor any
moving point can leave the scene.At each frame tk, there is a setXk ofmk measurements
xkj , with 1 ≤ j ≤ mk, and 1 ≤ k ≤ n, of points pi, where n is the number of frames
in the sequence. The measurements xkj are 2D coordinates in a 2D space. The number
of measurements, mk, at tk, can be different from M . In case of occlusion or missing
detections, the mk is smaller than M . The mk is larger than M when there are false
measurements. The objective of this tracker is to get a set ofM tracks that represents the
2D motion of M moving points through the sequence. A track Ti, with 1 ≤ i ≤M , is
a sequence of related measurements, < x1

i1
, x2
i2
, ..., xnin >, with 1 ≤ ik ≤ mk. A track

information up to tk is called a track head and is denoted as T ki , where 1 ≤ i ≤ M .
To match the related track heads and new measurements at each frame, the cost of
each matching is computed. Several cost functions were suggested based on the spatial
proximity, motion smoothness, and the changes in the magnitude of the speed vector.

This matching problem can be described as finding an assignment matrixAk = [akij ]
with size of M ×mk+1, where akij = 1 if and only if measurement xk+1

j is assigned
to track head T ki , otherwise, zero. The matching represented by the assignment matrix
should minimize the overall cost of trajectory matching. To minimize the overall cost,
the Hungarian algorithm is used [4]. The Hungarian algorithm minimizes the following
expression which finds the minimal cost assignment where wij denotes the cost of
assignment:

minimize C =
∑m
i=1
∑m
j=1 aijwij where

∑m
i=1 aij = 1, 1 ≤ j ≤ m,

∑m
j=1 aij = 1, 1 ≤ i ≤ m, aij ∈ {0, 1}.

To apply the Hungarian algorithm, the number of elements in two sets to be matched
should be equal. In Greedy Optimal Assignment (GOA) Tracker, false tracks and slave
measurements are introduced to make these two numbers equal and handle the false de-
tections and missing detections. Therefore, at each frame tk+1, the assignment matrices
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(a) (b)

Fig. 4. An image sequence of a ballet movement and obtained motion trajectories (a) left leg (b)
right hand

Ak is extended to (M + mk+1) × (mk+1 + M) matrices Akλ by adding mk+1 rows
andM columns, which allows formk+1 false tracks andM slave measurements. These
squared matrices,Akλ, enable that false measurements are assigned to false tracks and any
tracks without corresponding measurements are assigned to slave measurements where
each row in Akλ represents a track head and each column represents each measurement
at frame, tk+1.

A deviation matrix Dk
λ = [ckij ] which has same size with Akλ is defined as follows.

Each entry, ckij , of Dk
λ is set to the assignment cost between track head T ki and a new

measurement xk+1
j in case of matching between a true track and a true measurement,

i.e. 1 ≤ i ≤ M and 1 ≤ j ≤ mk+1. If i > M or j > mk+1, ckij is set to φmax, the
maximum cost. If the distance between the last measurement of a track head T ki , xkik ,
and the new measurement xk+1

j is greater than the maximum speed, dmax, ckij is set to
φmax + ε.

With these two square matrices, the assignment problem between track heads and
measurements at each frame, tk+1, is solved by finding the assignment matrixAkλ which
minimizes the global cost of matching where the cost of each matching is stored in Dk

λ.
And by applying Hungarian algorithm to the deviation matrixDk

λ = [ckij ], the assignment
matrix Akλ can be obtained.

In our implementation, Significant Motion Points (SMPs) are used as measure-
ments, xkj , at each frame. To support track initiation and termination in GOA tracker and
make use of the optical flow information which is available in our method, we modified
GOA tracker as follows. The number of tracks,Mk, can be different at each frame,tk+1,
for any moving point can enter or leave the scene. Additional mk+1 rows in Akλ which
were originally used for false tracks are used for new tracks. A new track is started from
the any measurement, xk+1

j , assigned to new tracks in assignment matrices, i.e, aij = 1
and i > Mk , j ≤ mk+1. For each track, the number of consecutive assignment to slave
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(a) (b)

Fig. 5. The input sequence and resulting trajectories (a) right hand (b) left hand

measurements, scki , is counted at each frame, tk. When scki is equal to a threshold value
Ts, the length of trajectory up to tk, lki , is compared with another threshold value Tl. If
this ratio is greater than Tl, this track is marked as a terminated track, otherwise, it is
marked as a false track and removed from the list of tracks.

The number of tracks at frame tk+1, Mk, is set to the number of continuing track at
the frame. Therefore, the first Mk rows of Akλ and Dk

λ represent continuing tracks. At
each frame tk+1, a deviation matrix Dk

λ with size of (Mk + mk+1) × (mk+1 + Mk)
is calculated and the Hungarian algorithm is applied to this matrix, which result in an
assignment matrix Akλ. The matching information obtained from Akλ is stored in each
track information at each frame. If a track is assigned to a slave measurement, i.e,
aij = 1 and i ≤Mk and j > mk+1, the calculated slave measurement is stored in track
information as a new matched measurement (xk+1

ik+1
). The slave measurement, sk+1

j is
calculated using optical flow information as follows.

sk+1
j = xkik + ofkik , where ofkik denotes the optical flow direction at the 2D coordi-

nates of xkik .
The cost function is modified from the one of the cost functions used in original

Greedy Optimal Assignment (GOA) Tracker. The original cost function described below
penalizes changes in the direction and the magnitude of the speed vector.

c1kij = 1−
(xkik
−xk−1

ik−1
)·(xk+1

j
−xkik )

‖xk
ik
−xk−1

ik−1
‖‖xk+1

j
−xk

ik
‖ , c2kij = 1− 2

√
‖xk
ik
−xk−1

ik−1
‖‖xk+1

j
−xk

ik
‖

‖xk
ik
−xk−1

ik−1
‖+‖xk+1

j
−xk

ik
‖

ckij = 0.1c1kij + 0.9c2kij , where 0 ≤ ckij ≤ 1.

But in our implementation, optical flow information and the distance between the
last measurement of a track and the new measurement are also considered as factors for
the cost function. We introduced two more cost terms c3, and c4 which are denoted as
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follows , where c3 penalizes the difference between the optical flow direction and the
moving direction from xkik to the new measurement.

c3kij = 1− (ofkik
)·(xk+1

j
−xkik )

‖ofk
ik
‖‖xk+1

j
−xk

ik
‖ , c4kij = min{ ‖x

k+1
j
−xkik‖

dmax
, 1}

New cost function for matching track head, T ki , and the measurement, xk+1
j , is

defined as follows.

ckij = w1c1kij + w2c2kij + w3c3kij + w4c4kij , where w1 + w2 + w3 + w4 = 1. At
the first frame of the sequence, new tracks are started from every measurement appear
in the frame. If a track is started at frame,tk, only c3 and c4 are used as cost terms when
it is matched to measurements at tk+1.

3 Experiments

We used actual ballet sequences from videos (American Ballet Theater andVideo Dictio-
nary of Classical Ballet). We extracted sequences of different ballet movements. These
sequences were decoded to images with a 320x240 pixel size. Each sequence has a dif-
ferent background and dancers with different clothing. For the cost function described
in previous section , weight values, w1, w2, w3 and w4, were set to 0.6,0.1,0.1, and
0.2. As can be seen in figures 3- 5, motion trajectories of hand and foot are extracted
simultaneously. In figure 4, there are other dancers in the background. But the trajectory
of hands and legs movements are successfully extracted, which is difficult if color in-
formation was used. As can be seen in figure 5, trajectories of two hands moving across
each other are extracted continuously; it is because we use optical flow information and
motion smoothness for cost factors. While motion trajectories are extracted successfully
in most sequences, false alarms and missed detection occur due to the shadows or objects
in the background captured by moving camera. While this approach can generate motion
trajectories with less limitations of background or clothing, the cost of computation time
is high, mostly due to the computation of optical flow. Another limitation is that the
actions without any significant body parts (hands or feet) movements cannot generate
representative motion trajectories. A new way of generating whole body trajectories for
the actions such as jumping or turning without significant body parts movements are
also being studied.

4 Summary and Conclusions

A new method for extracting motion trajectories of body parts and its application to
human action recognition is presented. Using our approach for extracting motion trajec-
tories, multiple motion trajectories of body parts are generated without any initialization.
Since no color information is used in this approach, no assumption about background
is necessary. We tested our algorithms on actual ballet sequences and obtained good
results. However, false alarms can occur due to shadows or camera movement.

The motion trajectories resulting from this approach can be used as potential features
for action recognition and temporal segmentation of specific action in continuous video
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sequences. The characteristics of body parts trajectories as features for action recognition
may allow separate action recognition for each body part and this is one of the research
topics we are pursuing.
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