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Abstract. In this paper a novel approach to the problem of impulsive
noise reduction in color images based on the nonparametric density es-
timation is presented. The basic idea behind the new image filtering
technique is the maximization of the similarities between pixels in a pre-
defined filtering window. The new method is faster than the standard
vector median filter and preserves better edges and fine image details.

1 Introduction

A number of nonlinear, multichannel filters, which utilize correlation among
multivariate vectors using various distance measures, have been proposed [1-11].
The most popular nonlinear, multichannel filters are based on the ordering of
vectors in a predefined moving window. The output of these filters is defined as
the lowest ranked vector according to a specific vector ordering technique.

Let F(x) represents a multichannel image and let W be a window of finite
size n + 1 (filter length). The noisy image vectors inside the filtering window W
are denoted as Fj , j = 0, 1, ..., n . If the distance between two vectors Fi,Fj
is denoted as ρ(Fi,Fj) then the scalar quantity Ri =

∑n
j=0 ρ(Fi,Fj) is the

distance associated with the noisy vector Fi . The ordering of the Ri ’s: R(0) ≤
R(1) ≤ ... ≤ R(n), implies the same ordering to the corresponding vectors Fi:
F(0) ≤ F(1) ≤ ... ≤ F(n). Nonlinear ranked type multichannel estimators define
the vector F(0) as the filter output. However, the concept of input ordering,
initially applied to scalar quantities is not easily extended to multichannel data,
since there is no universal way to define ordering in vector spaces. To overcome
this problem, distance functions are often utilized to order vectors, [1,2].

All standard filters detect and replace well noisy pixels, but their property
of preserving pixels which were not corrupted by the noise process is far from
the ideal. In this paper the construction of a simple, efficient and fast filter,
which removes noisy pixels, but has the ability of preserving original image pixel
values, is presented.

2 Proposed Algorithm

2.1 Gray-Scale Images

Let us assume a filtering window W containing n+1 image pixels, {F0, F1, . . . , Fn},
where n is the number of neighbors of the central pixel F0, and let us define the
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similarity function µ : [0;∞)→ R which is non-ascending and convex in [0;∞)
and satisfies µ(0) = 1, µ(∞) = 0 . The similarity between two pixels of the same
intensity should be 1, and the similarity between pixels with minimal and max-
imal gray scale values should be very close to 0. The function µ(Fi, Fj) defined
as µ(Fi, Fj) = µ(|Fi − Fj |) satisfies the three required conditions.

Let us additionally define the cumulated sum M of similarities between a
given pixel and all other pixels belonging to window W . For the central pixel let
us introduce M0 and for the neighbors of F0 let us define Mk as

M0 =
n∑
j=1

µ(F0, Fj), Mk =
n∑
j=1
j �=k

µ(Fk, Fj) , (1)

which means that for Fk which are neighbors of F0 we do not take into account
the similarity between Fk and F0, which is the main idea behind the new algo-
rithm. The omission of the similarity µ(Fk, F0) when calculating Mk, privileges
the central pixel, as in the calculation of M0 we have n similarities µ(F0, Fk),
k = 1, 2, . . . , n and for Mk, k > 0 we have only n − 1 similarity values, as the
central pixel F0 is excluded from the calculation of the sum Mk.

In the construction of the new filter, the reference pixel F0 in the window W
is replaced by one of its neighbors if M0 < Mk, k = 1, . . . , n. If this is the case,
then F0 is replaced by that Fk∗ for which k∗ = arg maxMk, k = 1, . . . , n.

In other words F0 is detected as being corrupted if M0 < Mk, k = 1, . . . , n
and is replaced by its neighbors Fk which maximizes the sum of similarities M
between all pixels of W excluding the central pixel. This is illustrated in Fig. 1.

The basic assumption is that a new pixel must be taken from the window
W (introducing pixels which do not occur in the image is prohibited like in the
VMF). For this purpose µ must be convex, which means that in order to find a
maximum of the sum of similarity functions M it is sufficient to calculate the
values of M only in points F0, F1, . . . , Fn, [11].

2.2 Color Images

The presented approach can be applied in a straightforward way to color images.
We use the similarity function defined by µ{Fi,Fj} = µ(||Fi−Fj)|| where || · ||
denotes the specific vector norm. Now in exactly the same way we can maximize
the total similarity function M for the vector case.

Several convex functions were applied in order to compare the new filtering
scheme with the standard filters used in color image processing presented in
Tab. 1 and good results were obtained, (see Tab. 2), when applying the following
similarity functions, which can be treated as kernels of nonparametric estimation,
[12, 13].

µ0(x) = exp
{
−
(x
h

)2
}
, µ1(x) = exp

{
−x
h
,
}
, µ2(x) =

1
1 + x/h

, h ∈ (0;∞),

µ3(x) =
1

(1 + x)h
, µ4(x) = 1− 2

π
arctan

(x
h

)
, µ5(x) =

2
1 + exp

{
x
h

} , h ∈ (0;∞) ,
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µ6(x) =
1

1 + xh
, µ7(x) =

{
1− x/h if x ≤ h,

0 if x > h,
h ∈ (0;∞).

It is interesting to note, that the best results were achieved for the simplest simi-
larity function µ7(x), which allows to construct a fast noise reduction algorithm.
In the multichannel case, we have

M0 =
n∑
j=1

µ(F0,Fj), Mk =
n∑
j=1
j �=k

µ(Fk,Fj) , (2)

where ρ{Fi,Fk} = ||Fk − Fl)|| and || · || is the L2 vector norm, as it yields the
best results.

Applying the linear similarity function µ7 we obtain

µ(Fi,Fk) =

{
1− ρ(Fi,Fk)

h for ρ (Fi,Fk) < h

0 otherwise
(3)

Then we have from (2)

M0 = n− 1
h

n∑
j=1

ρ (F0,Fj) Mk =
n∑
j =1,
j �=k

(
1− ρ (Fk, Fj)

h

)
= n−1− 1

h

n∑
j =1

ρ (Fk, Fj)

(4)
In this way the difference between M0 and Mk is

M0 −Mk = n− 1
h

n∑
j=1

ρ (F0,Fj)−

n− 1− 1

h

n∑
j=1

ρ (Fk,Fj)


 =

= 1− 1
h

n∑
j=1

[ρ (F0,Fj)− ρ (Fk,Fj)] , (5)

M0 −Mk > 0 if h >
n∑
j=1

[ρ (F0,Fj)− ρ (Fk,Fj)] . (6)

If this condition is satisfied, then the central pixel is considered as not disturbed
by the noise process, otherwise the pixel Fk for which the cumulative similarity
value achieves maximum, replaces the central noisy pixel. In this way the filter
changes the central pixel only when it is really noisy and preserves the original
undistorted image structures, (Figs. 1 and 2).

It is easy to observe that the construction of the new filter is quite similar
to the standard VMF. Instead of the function Rk used in the VMF, a modified
cumulative distance function R0 is proposed

Rk =



−h+

n∑
j=1

ρ(Fk,Fj) , for k = 0 ,

n∑
j=1

ρ(Fk,Fj) , for k = 1, . . . , n
, (7)
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and in the same way as in VMF, the original vector F0 in the filter window W
is being replaced by Fk∗ such that k∗ = arg min

k
Rk.

It is easy to notice that the above construction is equivalent to the condition
expressed in (6). Now, instead of maximizing the cumulative similarity Mk, we
minimize the modified cumulative distance Rk. In this way, the condition for
retaining the original image pixel is: R0 ≤ Rk, k = 1, . . . , n, which leads to the
condition

−h+
n∑
j=1

ρ(F0,Fj) ≤
n∑
j=1

ρ(Fk,Fj) , k = 1, . . . , n , (8)

R0 ≤ Rk if h ≥
n∑
j=1

[ρ(F0,Fj)− ρ(Fk,Fj)] , k = 1, . . . , n . (9)

The construction of the new filter is very similar to that of VMF, however
the major difference is the omitting of the central pixel F0, when calculating
Rk, k > 0. This scheme, based on the simple leave-one-out scheme, is the most
important feature of the new algorithm. As the central pixel is suspected
to be noisy, it is not taken into consideration, when calculating the distances
associated with the neighbors of F0. In this way the filter replaces the central
pixel only when it is really noisy, while preserving the original undisturbed image
structures.

As widely known, VMF has the disadvantage of replacing too many uncor-
rupted image pixels. It is improved in the new filter design by setting positive h
values, which forces the filter to preserve uncorrupted, original pixels, but still
enables to remove corrupted ones. Moreover, h can be controlled for the best
effectiveness of the filter depending on image structure and noise statistics.

It is easy to observe that the presented method is faster than VMF. It can
be shown using a simple matrix representation, (for the sake of simplicity in the
4-neighborhood system case). In order to find Rk∗ using the VMF method we
have to add the elements in rows or columns of the symmetric matrix TVMF

TVMF =




0 ρ01 ρ02 ρ03 ρ04

ρ10 0 ρ12 ρ13 ρ14

ρ20 ρ21 0 ρ23 ρ24

ρ30 ρ31 ρ32 0 ρ34

ρ40 ρ41 ρ42 ρ43 0


 , TNEW =



−h ρ01 ρ02 ρ03 ρ04

0 0 ρ12 ρ13 ρ14

0 ρ21 0 ρ23 ρ24

0 ρ31 ρ32 0 ρ34

0 ρ41 ρ42 ρ43 0


 . (10)

where ρij = ρji = ρ(Fi,Fj). Obviously, the symmetry of the matrix TVMF

causes that effectively we have to compute 10 distances (36 in the 8-neighborhood
case) and then to make 15 additions (63 in the 8-neighborhood case). For the
implementation of the new filter (matrix TNEW ), the number of distances we
need, is still 10 but there is only 11 additions (55 in the 8-neighborhood case),
so the new filter is faster than VMF.
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3 Results

For evaluation purposes, the color test image LENA was corrupted with impul-
sive noise defined by xij = vij with probability p, where i, j define a pixel posi-
tion, p describes the intensity of the noise process, xij denotes the original image
pixel and vij denotes a pixel corrupted by the noise process vij = {νR, νG, νB},
where νR, νG, νB are random integer variables from the interval [0, 255] updated
for each corrupted pixel.

The root of the mean squared error (RMSE), peak signal to noise ratio
(PSNR), normalized mean square error (NMSE) [1,2] were used for the anal-
ysis. The comparison shows that the new filter outperforms by far the standard
vector median filter, which can be treated as a reference filter, and other filters
listed in Tab. 1. The efficiency of the new filtering technique is shown in Tab. 2
and in Fig. 2.

The new algorithm presented in this paper can be seen as a fast modification
and improvement of the Vector Median Filter. The comparison with standard
color image processing filters shows that the new filter outperforms the standard
procedures used in color image processing. Another advantage of the proposed
filtering class is its lower computational complexity compared to the VMF, which
makes the new filter class interesting for real-time applications

4 Conclusions

The new algorithm presented in this paper can be seen as a fast modification and
improvement of the Vector Median Filter. The comparison with standard color
image processing filters, (Tab. 2, Fig. 2) shows that the new filter outperforms
the standard procedures used in color image processing, when the impulse noise
is to be eliminated.

Notation Filter

AMF Arithmetic Mean Filter

VMF Vector Median Filter

BVDF Basic Vector Directional Filter

HDF Hybrid Directional Filter

AHDF Adapt. Hybrid Directional Filter

DDF Directional-Distance Filter

Table 1. Filters taken for comparison with the proposed adaptive filter, [1,2].
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METHOD NMSE [10−4] RMSE PSNR [dB]

NONE 514.95 32.165 17.983

AMF 82.863 12.903 25.917

VMF 23.304 6.842 30.149

BVDF 29,074 7.643 30.466

HDF 22.845 6.775 31.513

AHDF 22,603 6,739 31.559

DDF 24.003 6.944 31,288

FILTERING KERNELS

µ0(x) 5.056 3.163 38.137

µ1(x) 4.959 3.157 38.145

µ2(x) 5.398 3.294 37.776

µ3(x) 9.574 4.387 35.288

µ4(x) 5.064 3.190 38.054

µ5(x) 4.777 3.099 38.307

µ6(x) 11.024 4.707 34.675

µ7(x) 4.693 3.072 38.384

Table 2. Comparison of the new algorithm based on different kernel functions with the
standard techniques, using the LENA color image contaminated by 10% of impulsive
noise.
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a) b) c)

d) e) f)

g) h) i)

Fig. 1. Illustration of the new filter construction. The supporting window W of size
3×3 contains 9 pixels of intensities {15, 24, 33, 41, 45, 55, 72, 90, 95}. Each of the graphs
from a) to i) shows the dependence of M0 and M/0, (M/0 < M0), where M/0 denotes
the cumulative similarity value with rejected central pixel F0 on the pixel gray scale
value. Graph a) shows the plot of M0 and M/0 for F0 = 15, plot b) for F0 = 24
and so on till plot plot i) which shows the graphs of M0 and M/0 for F0 = 95. The
arrangement of pixels surrounding the central pixel F0 is not relevant. The central pixel
will be replaced in cases: (a), (b), (f) - (i), as in those cases there exists a pixel Fi for
which M0 < Mi.
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Fig. 2. Comparison of the efficiency of proposed filter with the VMF: a) parts of the
LENA, BARBARA and GOLDHIL images, b) images contaminated by 6% impulsive
noise, c) images restored using the proposed technique, d) the result of the filtering
with the vector median.
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