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Abstract. We consider the problem of learning an object model for
feature matching. The matching system is Bayesian in nature with sep-
arate likelihood and prior parts. The likelihood is based on Gabor filter
responses, which are modelled as probability distributions in the filter
response vector space. The prior model for the object shape is learnt in
two stages: in the first stage we assume only the mean shape known, with
independent variations for each feature point, and match ’easy’ images.
We then estimate the characteristics of the shape variations for a real-
istic prior on the shapes. We demonstrate how incorporating the shape
variation prior into the matching model enhances matching performance
in the presence of clutter.

1 Introduction

In feature based object recognition a central task is to find the matching locations
for the stored features of an object in a novel image. Common approaches to the
problem include template matching with pixel difference or correlation similarity
measures [1], edge and corner point matching methods especially popular in
stereo vision research [2] and line segment matching methods [3]. However, for
more complex tasks such as face recognition a richer set of features is needed.

We use a Gabor filter-based approach to feature matching in this paper
with human facial images as our data. Similar features have previously been
used in, e.g., [4], with error minimization based matching. In our system we
apply Bayesian inference, with explicit likelihood and prior terms, and sampling
methods to find the posterior distribution of the matching locations given the
image.

In this paper we describe how the prior model for the locations of the features
can be learned. In the first stage of the matching process we use a simple prior
with independently Gaussian deviations from the mean to match a number of
faces in absence of clutter. These matches are used to build a covariance model
of the face shape. We then proceed to demonstrate how a good model of face
shape greatly improves matching performance in the presence of clutter, when
there are multiple possible matches for each individual feature.
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2 The Matching Model

We approach the matching problem from the Bayesian point of view [5], i.e.
we consider all observable and unobservable quantities random variables and
analyze their dependencies statistically. Our observed variable is the perceived
image I and our unobserved variables are the feature locations X and possible
hyperparameters ξ, which are the parameters of the prior on X. Furthermore, all
variables are conditional on a number of model assumptions (e.g. noise models
and such), denoted by M. Our aim is to infer the posterior distribution of the
unobserved variables given the perceived image and the model assumptions

p(X, ξ|I,M). (1)

The perceived image I is first transformed to the feature space, I �→ T, so that
each pixel (u, v) has associated features t(u, v). By replacing I in Eq. 1 with
the transformed image, applying Bayes’s formula [5] and integrating over the
hyperparameters (since we are not interested in their actual values), we arrive
at the posterior distribution

p(X|T,M) ∝
∫
p(T|X, ξ,M)p(X|ξ,M)p(ξ|M)dξ. (2)

In Eq. 2 the terms of the model can be seen clearly: the likelihood p(T|X, ξ,M) is
the probability of observing T given the feature locations and hyperparameters,
p(X|ξ,M) is the prior distribution of the feature locations given the hyperparam-
eters, and p(ξ|M) is the hyperprior. The likelihood can be simplified by having
it be independent of the hyperparameters, in which case it becomes p(T|x,M).

3 The Likelihood

In our model the likelihood is the probability of observing the feature image
T given the feature locations X and the model assumptions M . We make the
simplifying assumption that the likelihoods of the transformed pixels t are inde-
pendent of each other and dependent only on the individual feature locations xi
and the background knowledge Mi pertaining to the ith feature, which allows
us to write

p(T|X,M) =
∏
i

p(ti|X,M) =
∏
i

p(ti|xi,Mi). (3)

Thus we need to determine p(ti|xi,Mi), the likelihood of observing a transformed
pixel ti given that feature i is located at xi, and compute this for all pixels ti.

As the transformation I �→ T we employ a Gabor filter bank [6] with 3
frequencies and 6 orientations. The filter responses are stacked as vectors, or jets,
and to define p(ti|xi,Mi) we need to compare the perceived jets and the jets we
would expect the feature to have. We do this by assuming that the distribution
of the amplitude and phase jets in the vector response space are both Gaussian,
and determine the distribution parameters by fitting a number of faces by hand
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and measuring the jets at the feature locations. (These distribution parameters
are contained in Mi.) It is then easy to compute the likelihood for each pixel of
the perceived image by using the probability density function of the Gaussian
distribution.

For contrast-independence, we transform the Cartesian jets into n − 1 hy-
perspherical angle coordinates (i.e. jet length becomes 1) [7]. However, complete
contrast-independence is not desirable as it causes the system to be sensitive to
faint patterns and noise in uniform areas. To avoid this we add a term measuring
the energy of the Gabor jet. This term also has a Gaussian form, with variance
multiplied by an ad hoc constant to reduce its effect.

By combining the amplitude, phase, and energy components, we get the total
likelihood, as follows:

p(ti|xi,Mi) ∝ exp(− 1
2 (Gamp − µamp)TΣ−1

amp(Gamp − µamp)) ·
exp(− 1

2 (Gphase − µphase)TΣ−1
phase(Gphase − µphase)) ·

exp(− 1
2σ2
energy

(Genergy − µenergy)2), (4)

where the Gamp, Gphase and Genergy are the Gabor jet properties correspond-
ing to ti and µamp, µphase, µenergy, Σamp, Σphase and σenergy the corresponding
distribution means and (co)variances. A sample likelihood field is illustrated in
Figure 1. It can be seen that the likelihood is insufficient by itself for unambigous
matching of the features, as there are many spurious responses in regions that
have locally similar spatial frequencies.

Fig. 1. The likelihood fields in sample images. Manually selected location of the features
are marked as + in the images. There are multiple false matches in all the images, and
the maximum likelihood for the chin point occurs in an incorrect location, as due to
lighting the chin shadow is almost non-existent.

4 The Priors

In Bayesian inference, the prior for the unknown parameters in any given task is
the posterior of the parameters given all the previously observed information on
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Fig. 2. The leading principal components. In the upper row, the dark grids show the
mean shape and the lighter grids show the results of adding the leading eigenvectors
to the mean. In the other rows, the face on the left has been morphed according to
the principal components, both in the positive (middle row) and negative (lower row)
directions. Components 2 and 3 appear to be related to rotations, while components
1, 4, and 5 are shape-related.

the parameters. So, in theory, we could start with a non-informative prior on the
object shapes and update the prior after each new recognized shape to reflect
the observed data. This would require a robust assessment of the goodness of the
shape recognition, which is a rather difficult issue. For simplicity, we build the
prior model in two stages. The first stage prior contains no information about
the shape variations, but it is easy to define. This prior is used to match a
number of faces in a controlled environment (clutter-free background, relatively
standard lighting conditions), after which the matched faces are used to learn
the covariance prior (or, to be more correct, the posterior p(X|D,M)) which
encodes the typical shape variations.

4.1 The Simple Prior

In the simple prior we assume that the features are ordered in a planar graph
with independent Gaussian variations. A reference graph is computed from the
manually annotated images used in the likelihood parameter estimation and
during recognition, the prior mean on feature location xi is obtained by scaling
and translating the reference grid according to the other features. The variance
parameter of the distribution determines the scale of alloved deviations from the
mean. In the Bayesian approach we avoid fixing this value by setting an inverse-
gamma prior on it and integrating the parameter out in the MCMC sampling of
the parameters. For details on the sampling techniques see [8].
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Fig. 3. Matching in the absence of clutter. The images in the upper row are matched
using the simple prior, while the ones in the lower row have utilized the covariance
prior. The priors perform approximately equally.

Fig. 4. The system tested with real images. The images in the upper row are matched
using the simple prior, while the ones in the lower row have utilized the covariance
prior. The superiority of the covariance prior is evident.

4.2 The Covariance Prior

Once we have matched a set of images (larger than the manually annotated one)
using the simple prior, we can compute the posterior of the feature locations
given the obtained matches p(X|D,M). We again assume this distribution to be
Gaussian. However, since it is very high-dimensional (with 63 feature points, as
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used here, the distribution is 126-dimensional), a very large amount of data is
required to estimate the distribution parameters accurately. To deal with this,
we find the most significant variations of the face shape by principal compo-
nents analysis and project the estimated covariance matrix onto the principal
components. The first five principal components are illustrated in Figure 2.

Fig. 5. Results with AAM. Without clutter (upper row) the matching result is slightly
inferior to our system. In cluttered images (lower row) the matching fails completely.

5 Results

Figure 3 illustrates the performance of the two priors when the images are
clutter-free. We produced samples from the posterior distribution of feature loca-
tions with Gibbs sampling (the simple prior) and Metropolis-Hastings sampling
(the covariance prior) [9], and the shown grids are the medians of the samples.
The system was also tested with a number of realistic images containing clut-
ter. Some results are shown in Figure 4. In the clutter-free case the results are
roughly equal. In cluttered scenes the performance of the covariance prior is
much better. With the simple prior, some features tend to be matched to the
false local maxima of the likelihood, because the simple prior does not enforce
the graphs to be face-shaped.

For comparison, we used the same training data to build an Active Appear-
ance Model (AAM) [10] and matched both the clutter-free and cluttered images
with it. The matching was done using the AMMLab implementation by M. B.
Stegmann [11]. The results are shown in Figure 5. In the clutter-free images
AAM performs approximately equally to our system. However, when match-
ing faces in cluttered scenes, the performance of the proposed system is clearly
superior. It must be noted, though, that the quality of the training image set
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was apparently insufficient for proper training of the AAM model - there were
slight pose variations in the images, hampering especially the texture principal
components, and the number of images was rather low. On the other hand, the
results suggest that the proposed system has tolerable performance also on small
imperfect training data.

6 Conclusion

We have presented a face matching framework in which the shape of the objects
to be matched is learned in a bootstrap fashion. With a good measure of the
goodness of fit, this kind of system could be used in unsupervised learning of
image contents so that the system would match objects automatically and im-
prove the prior according to them. However, in practice the efficiency of such
a learning process would depend critically on the used measure. In addition to
this, in the future we are going to work on an occlusion model and extend the
system so that it is able to cope with larger distortions of pose.
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