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Abstract. We consider and evaluate the context clustering method for lossless
image compression based on the existing LOCO-I algorithm used in JPEG-LS –
the latest lossless image compression standard. We employ the LOCO-I Med-
predictor to enroll the error pixels. The contexts are defined by calculating gra-
dient of current pixels. The three directional gradients are quantized with differ-
ent codebook size (7, 9, 19) respectively. The error pixels are then corrected and
encoded by the clustered-contexts. A main advantage of using the context clus-
tering method is that it can eliminate the storage of probability vector. An adap-
tive arithmetic encoder is also introduced to yield a higher compression rate.

1   Introduction

Lossless image compression has been widely used in many applications fields such as
picture archiving, geophysics surveying and telemedicine. Recently, several algo-
rithms have been developed so well as the benchmarks of image compression.
FELICS is a simple and efficient compression algorithm avoiding the time-consuming
arithmetic coding [1]. The latest JPEG-LS standard was implemented based on the
LOCO-I algorithm [2, 3]. CALIC, the Adaptive Context-based Lossless Image Codec
[4], was evaluated to be in best performance by the JPEG working group. Both of the
algorithms employ prediction techniques before context modeling. In addition to pre-
diction techniques, the continuous-tone image can be divided into a set of bitplane
images that are coded by CTW, the context tree weighting method [5]. An alternative
of bi-level image compression is context clustering [6], replacing the conditional
probability vector or density function in each context with the reference probability
vector in its cluster of contexts.  The method improves bi-level image compression
performance by reducing the storage of the probability density functions (PDFs).

Since the conditional probability density function in each context is represented as a
probability vector in a Euclidean space, context clustering can be used to quantize the
probability density functions of the existing algorithms. Thus, only the referenced
probability vectors need to be coded and transmitted to the decoder as a part of the
storage of the compressed file. To implement lossless image compression, we first
follow the LOCO-I Med-predictor. Then context clustering and an adaptive arithmetic
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coder are employed. We replace the fixed-size quantizer in LOCO-I with an optimized
quantizer. For reduction of PDF vector storage, the codeword of each corrected error
pixel is divided into two parts. Context clustering is implemented only in PDF vector
space by using the generalized Kullback-Leibler distance. Finally, we test the per-
formances of JPEG-LS, CALIC, BTPC (bit plane predictive coding) and our context
clustering algorithm for several gray-scale images. Experimental results show that the
proposed algorithm yields a similar compression rate with JPEG-LS but provides a
flexible framework and some variations of methods included in JPEG-LS.

2   Prediction

We first take a 4-pixel neighborhood as the context used for the prediction of current
pixel; see figure 1. Since the predictor in CALIC seems more complicated, we here
employ the LOCO-I predictor described in the right side of figure 1.
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Fig. 1. 4-pixel context in gray scale image and the Med-predictor in LOCO-I

The predicted error pixel is calculated as ε (t) = x(t) - x̂ (t) and will be corrected later
by bias cancellation for statistical modeling, where t is the current pixel position.

3   Context Modeling

The context modeling includes the following two steps: context quantization, and bias
cancellation. The context is determined by calculating three gradients between the four
context pixels: g1 = d - b, g2 = b - c, and g3 = c - a.

3.1   Context Quantization

Each gradient variable can be quantized either by a K-means quantizer or a fast scalar
quantizer [7]. The codebook size of g1, g2, and g3 is 7, 9, and 19 respectively. We here
assume that the value of g1 is very close to the value of g2 because they are the hori-
zontally neighboring gradients while g3 is the unique vertical gradient. We therefore
assume the number of quantized values for g3 should be more or less equal to the sum
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of the numbers for g1 and g2. Then contexts are merged according to the quantized
values. That is to say, the contexts with the identical quantized values are merged. The
number of models is reduced further by assuming that symmetric contexts
Ci = �g1, g2, g3� and Cj = �-g1, -g2, -g3� have the same statistical properties (with the
difference of the sign). The total number of models is thus:
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3.2   Bias Cancellation

Since the quantized context C(t) is known both by encoder and decoder, the prediction
error pixel ε (t), which is used to recover the image pixel x(t), can be corrected adap-
tively by C(t). The adaptive correction is used to cancel the bias offset of TSGD dis-
tribution [3] due to the fixed predictor. We denote the estimated error pixel and the
corrected error pixel as ε̂ (t) and ε (t) respectively. We here present the pseudo-codes
of the bias cancellation [8] as follows:
PROCEDURE BiasCancellation(x, x̂ ,C) return ε
  FOR q � 1 TO NumberOfQuantizedContexts DO
    S(q)�0;N(q) �1;
  FOR t � 1 TO NumberOfImagePixels DO
    q � QuantizationIndexOf(C(t));
    ε̂ (t) � S(q) / N(q);
    x (t) � x̂ (t) + ε̂ (t);
    ε (t) � x (t) – x (t);
    S(q) � S(q)+ ε (t); N(q) � N(q)+ 1;
    IF N(q) � 128 THEN
      S(q) � S(q)/2; N(q) � N(q)/2;
  return ε ;
END PROCEDURE.

4   Statistical Modeling

To prepare for statistical modeling, we need to interleave the corrected errors into
non-negative region by a transformation in LOCO-I; see formula (4) in [2]. Then the
conditional PDF functions in quantized contexts can be calculated for the encoder.
However, the conditional PDF functions, which should be stored in the compressed
file, will take a large memory space. To reduce the storage of the PDF functions, we
here separate the corrected error pixel ε  into two variables, ε 1 and ε 2, which will be
coded separately. A simple solution is to divide each corrected error ε  by a constant
integer d = 16 and calculate the corresponding quotient and modulo as:
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4.1   Context Clustering

To reduce PDF function storage further, we employ context clustering in PDF vector
space and replace the PDF vector in each context with the reference PDF vector in its
context cluster. A given context C is represented by the pair of probabilities C = (f, p),
where f is the probability of the context C and p is the conditional PDF function or
vector of the corrected error pixel in the context C.

 An optimized codebook Y consisting of 11 reference vectors is generated by the K-
means clustering algorithm. The jth reference vector yj is calculated as:

),( jjj pfy = , ∑
=

=
jiL

ij ff
)(

, ∑
=

⋅
=

jiL j

ii
j

f

pf
p

)(
(3)

where L(i) is the partition table. Instead of the conditional PDF vector p, the reference
conditional PDF vector p  is used to encode all error pixels neighbored by any con-

text in cluster j.  The number of conditional PDF vectors used by encoder is therefore
reduced. To optimize the codebook Y in the PDF vector space {(f, p) | f�R, p�Rdim},
we employ Kullback-Leibler distance as the vector-to-cluster distance in this work.
The quantized contexts are therefore reallocated into clusters by clustering only in the
PDF vector space.

4.2   Clustering Distance and Distortion Function

As shown in section 4.1, each context is optimally allocated into a cluster with a refer-
ence conditional PDF vector p , which is used to encode the corrected error pixel

instead of its own PDF vector p. So the distortion of context clustering should reflect
the total difference of entropy gained by using the two kinds of PDF vectors above. In
compression of gray-scale images, the distortion function is naturally generalized as:
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5   Adaptive Arithmetic Coding

In this section we introduce an adaptive arithmetic coder, of which PDF function is
updated with the encoded pixels. The adaptive coder is demonstrated by encoding a
sequence S = { S(i) | i = 1, �� , N } that consists of a, b and c. The sequence S is
described as aaabbaaccbbccbb, from which the initial frequency of each symbol is
calculated as fa = 5, fb = 6 and fc = 4. The initial frequencies here need to be transmitted
to decoder. Then the sequence can be coded by a set of adaptive probabilities as {
5/15, 4/14, 3/13, 6/12, 5/11, 2/10, 1/9, 4/8, 3/7, 4/6, 3/5, 2/4, 1/3, 2/2, 1/1 }. To make it
clear, we present the pseudo-codes of this example adaptive coder as:
PROCEDURE AdaptiveCoder(S,fa,fb,fc)
  ga � fa; gb � fb; gc � fc; N � fa+fb+fc;
  FOR i � 1 TO NumberOfCharacters DO
    ArithmeticCoding(S(i),ga/N,gb/N,gc/N);
    IF S(i)= a THEN ga � ga-1;
    ELSE IF char(i)= b THEN gb � gb-1;
    ELSE gc � gc-1;
    N � N-1;
END PROCEDURE.
In the adaptive coder above, once if the current character has been coded, it will be

removed from the sequence, therefore, the next pixel to be encoded is coded by prob-
ability distribution of the rest of the sequence. Hence the adaptive arithmetic coder can
yield a better compression rate if the sequence size is not very large. Similarly, the
adaptive arithmetic coder works as well in coding the corrected error pixels by updat-
ing the conditional PDF vectors.

6   Experimental Results

This section describes the testing results of the lossless image compression with con-
text clustering. We used six standard images for testing our context clustering algo-
rithm; see table 1, which lists the final bit rate of six compressed images. We also
experimented three lossless image compression algorithms, CALIC, LOCO-I and
BTPC, to evaluate the performance of our algorithm.

From testing results, we learned that the context clustering achieves a compression
ratio close to LOCO-I but more flexible than others in selection of contexts and the
conditional PDFs. We chose 7, 9 and 19 as the quantizer size for each gradient re-
spectively. We learned from experiments that the selection of gradient quantizer size
could have effect on the compression performance. The adaptive arithmetic coder does
improve compression ratio in this work, however, the improvement is sensitive to the
number of symbols to be coded: when the number of symbols is very large the im-
provement is limited.
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Table 1.  Compression results of testing images in bits/pixel

Testing Image
Context
Clustering

CALIC LOCO BTPC

Camera 4.34 4.24 4.31 4.94
Bridge 5.76 5.70 5.79 6.36
Missa001 3.50 3.43 3.45 3.99
Missa002 3.49 3.43 3.45 3.98
Lena 4.64 4.50 4.60 4.81
Boats 3.95 3.86 3.94 4.42

7 Conclusions

Context clustering is shown to be an effective alternative for lossless image compres-
sion in this work. By replacing the conditional PDF vector with the reference PDF
vector, context clustering solves the storage problem of the PDF vectors. Therefore an
adaptive arithmetic coder can be directly used to encode the corrected error pixels,
however, its coding performance depends much on the number of the symbols to be
coded. A variable quantizer size for each gradient should be more reasonable than a
fixed size such as 9. We found that when the quantizer size of vertical gradient is
equal to the sum of the quantizer sizes of two horizontal gradients, our context clus-
tering method achieves a better performance.

Context clustering still suffers a bottleneck between the entropy of arithmetic cod-
ing and storage of PDF vectors. Usage of more PDF vectors in arithmetic coder is
best way to reduce the coding entropy, however, the storage of PDF vectors will in-
crease sharply. The further research will concentrate on improving the existing meth-
ods in the proposed context clustering algorithm. For example, an optimal division
number d in equation (2) needs to be estimated to improve compression performance.
Selection of the optimal number of clustered contexts in PDF vector space should be
investigated in future. Furthermore, the scalar context quantizations in this work will
be replaced by the vector quantization in context gradient space, which needs to be
solved on the fly.
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