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Abstract. In this paper, an algorithm for fully automatic segmentation
of the cortex from T1-weighted transversal, coronal, or sagittal MRI
data is presented. The segmentation algorithm uses a histogram-based
method to find accurate threshold values. There are four initial masks
created: first two thresholded masks from the original volume, providing
background and brain tissue; then a third mask thresholded from a 3D
grey-level eroded version of the volume, providing brain tissue; and lastly
a fourth mask thresholded from a 3D grey-level dilated version of the
volume, providing surrounding fat. On the start slice of these masks
binary morphological operations and logical operations are used; then
the rest of the slices are segmented using information from the previous
slice combined with the other masks. Information from earlier slices is
propagated to keep the segmented volume from leaking into non-brain
tissue.

1 Introduction

Magnetic resonance imaging (MRI) provides detailed information of the anatomy
of the object that is examined. In a T1-weighted image, fat appears as bright,
i.e. relatively short T1 values; white and grey matter are somewhat darker;
fluids and bone tissue appear even darker, i.e. long T1 values. The process of
segmenting the cortex is required before analysis and visualisation [4]. There are
several segmentation methods for MR brain images, but those methods do not
use grey-level morphology.

Several methods are based on statistical approaches [6] as well as methods
using artificial neural networks [16], [17]. These methods will not work on a
single T1-weighted MRI-data-set, but are multi-spectral approaches that require
at least an additional T2-weighted MRI-data-set. Some statistical methods use
only one MRI scan, by examining statistical characteristics of the histogram [9].
There are methods that use only T1-weighted MRIs to classify grey and white
matter applying a histogram approach [12]. Methods that find thresholds using
an iterative approach [15] also exist. These methods also use binary morphology
to break connections to non-brain tissue.
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In the method discussed in this paper, the main improvements compared
to earlier work [5], [3] are that sagittal and coronal MRI are special cases and
that most of the bright non-brain tissues and background are removed. For
an example of a 3D visualisation of a segmented brain, segmented with the
algorithm, see Fig. 1.

(a) (b)

Fig. 1. A segmented head viewed from behind. The data set used is of very low reso-
lution, 79× 95 with 68 slices, but the algorithm is robust enough to segment the data.
a) Original data. b) Segmented cortex.

2 Methods

2.1 Overview

The method is based on multiple-level thresholding and grey-level morphology
combined with anatomical knowledge and binary morphology. A histogram-
based method is used to select the threshold intervals. The different kinds of
tissues found are brain matter (white matter, grey matter), dark tissue types
(fluids, bone, background) and bright tissue types (fat). The thresholding is per-
formed on kernel density estimates (continuous histogram (KDE)) [7], [11], [10].
From this continuous histogram the second derivate is calculated and the four
greatest maxima are selected and sorted. See Fig. 2 for an example of how a his-
togram and the continuous histogram with the second derivate may look. The
interval from the lowest to the second maximum then corresponds to CSF and
bone, and anything below the first threshold is air. Grey matter is approximately
the second to third threshold and white matter is the third to fourth threshold,
see Fig. 3a). Surrounding tissues (and sometimes some internal structures in
the brain) are above the fourth threshold. Either the complete histogram of the
volume or the histogram from the start slice can be used.

In addition to the original MRI-data, called OrgImage, two volumes are
calculated. The original MRI-data is grey-level-eroded [13], [14], [1], [2] using a
3 × 3 × 3 structure element; this new volume is called MinImage. The original
MRI-data is also grey-level-dilated using a 3 × 3 × 3 structure element; this
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(a) (b)

Fig. 2. a) Grey-level histogram of a mid slice in a 3D MRI data set. b) KDE and
second derivate plot of the same slice.

volume is called MaxImage. These images are used to facilitate determining the
cortex, by eliminating false connectivities to surrounding tissues. The MinImage
is used to make wider gaps between the cortex and those tissues that are not
to be included, see Fig. 3b). To find surrounding fat the MaxImage is used, see
Fig. 3c). In the grey-level eroded volume the background is below the second
max found from the second derivate of the continuous histogram. In the grey-
level dilated volume the surrounding tissue is above the third max found in the
same manner as in the previous case.

(a) (a) (a) (c)

Fig. 3. a) Brain tissue. b) Brain tissue after grey-level erosion. c) Fat tissue after
grey-level dilation. d) Segmented brain.

As of now, there are three versions of the algorithm. The first implementation
only handled transaxial MRI data, but now special cases for sagittal and coronal
MRI data has been developed. In the transaxial case a slice in the middle of a
brain is selected as the start slice, see Fig. 4a). The foreground and background
are determined and the information of previous segmentation (both of brain
tissue and non-brain tissue) is then applied on the following slices. In the sagittal
case, two slices are determined, one in the left hemisphere and one in the right
hemisphere, see Fig. 4b). These are chosen as starting slices and are selected
from a bounding-box of thresholded tissue to assure that approximately the
same slices from the brain are selected. The distance to this slice is one fourth
of the distance from the outermost part towards the outermost part of the other
side. As in the transaxial case, the information from previously segmented slices
propagates throughout the traversing of the volume. In the coronal case, the
structure of the algorithm is slightly different. As in the sagittal case, two starting
positions are selected. Fig. 4c) demonstrates the different regions in the volume.
The distances to the slices are the same as in the sagittal case, one fourth of
the distance from the outermost part towards the outermost part of the other
side. The same algorithm that is used to determine the start slices in the two
other algorithms is here used for all slices from position B to C in conjunction
with propagating information from previous slices, to avoid losing areas of the
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brain that are no longer connected to the largest region. For the slices from
position A and position D, outwards, the same criteria as in the sagittal case are
used. The information from previously segmented slices propagates throughout
the traversing of the volume. An example of a segmented slice can be seen in
Fig. 3d).

(a) (b) (c)

Fig. 4. How the algorithm advances on: a) A transaxial volume. b) A sagittal volume.
c) A coronal volume.

2.2 Segmentation algorithms

The important steps of the algorithm are described using pseudo-code. First the
thresholding process is described, then how the background is accounted for, and
then how to create a start mask in the two cases depending on the orientation
of the data. Lastly, it is described how the foreground, i.e. the brain tissue, is
segmented. All binary dilations and erosions use a 3×3 structure element. Unless
otherwise stated, operations on consecutive lines are performed in sequence using
previous result.

Histogram thresholding algorithm

input: A volume of MR data of the brain, OrgImage.
A grey-level eroded volume, MinImage.
A grey-level dilated volume, MaxImage.

output: A mask with possible brain matter, OrgMatter.
A mask with darker brain matter, MinMatter.
A mask with possible fat, MaxFat.

using the histograms
generate continuous histogram from OrgImage
find 4 largest local max in 2nd derivative sort
select threshold between 2nd and 4th max → OrgMatter
generate continuous histogram from MinImage
find 4 largest local max in 2nd derivative sort
select threshold above 2nd max → MinMatter
generate continuous histogram from MaxImage
find 4 largest local max in 2nd derivative sort
select threshold above 3rd max → MaxFat

end;
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Background algorithm

The algorithm is applied in two directions for maximum performance. If the data
are sagittal, they are applied in the transaxial direction as well. For transaxial
data, they are applied in the sagittal direction too. The results are then ORed
together.
input: A mask with possible brain matter, OrgMatter.

A mask with possible fat, MaxFat.
output: A mask without brain matter, NoBrainMask.
on start slice

complement OrgMatter → OrgNoMatter
label MaxFat keep objects > 0.1% of brain size
MaxFat OR OrgNoMatter → NoBrainMask

traverse volume
dilate MaxFat
keep pixels under (dilate previous from NoBrainMask)
keep pixels under OrgMatter
OR complement OrgMatter
OR (label MaxFat keep objects > 5% of brain size) → NoBrainMask

end;

Start slice algorithm
In transaxial data there is only need for one start slice, due to the anatomy of
the brain. For the sagittal case there are two start slices generated in the middle
of each hemisphere to avoid problems where the two brain halves meet. In the
coronal case there are also two start slices to avoid difficulties when the brain is
split up into several regions.
input: A mask with possible brain matter, OrgMatter.

A mask with darker brain matter, MinMatter.
A mask with possible fat, MaxFat.

output: A mask slice with the start slice of the brain, StartMask.
on start slice

complement OrgMatter OR MaxFat
erode MinMatter label keep largest region
dilate keep pixels under input mask fill holes
dilate keep pixels under OrgMatter fill holes

store result in StartMask
end;

Foreground algorithm
On transaxial data the algorithm starts in a mid-brain slice and advances up-
wards and downwards. On sagittal data the algorithm starts at two positions,
both in the middle of the right and the left hemispheres and advances to the left
and to the right until they meet. On coronal data the algorithm starts at two
positions in the brain (A and D) and advances out to the border of the brain,
as can be seen in Fig. 4c).
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input: A mask with possible brain matter, OrgMatter.
A mask with darker brain matter, MinMatter.
A mask with non-brain matter, NoBrainMask.
A start mask StartMask

output: A mask with the segmented areas, Segm.
on start slice

store StartMask in Segm
fill holes → PrevSegm

traverse volume
select slice from MinMatter dilate fill holes
MinMatter AND PrevSegm dilate AND OrgMatter
AND NOT NoBrainMask → Segm
fill holes → PrevSegm

end;
Foreground algorithm coronal cases B and C
On coronal data the algorithm starts at two positions in the brain (B and C) and
advances into the centre of the brain, as can be seen in Fig. 4c). The algorithm
is a combination of the start slice algorithm and the foreground algorithm.
input: A mask with possible brain matter, OrgMatter.

A mask with darker brain matter, MinMatter.
A mask with non-brain matter, NoBrainMask.
A start mask StartMask

output: A mask with the segmented areas, Segm.
on start slice

store StartMask in Segm
fill holes → PrevSegm traverse volume
Complement OrgMatter OR MaxFat
erode MinMatter label keep regions > 10% of brain size
dilate keep pixels under input mask fill holes
dilate keep pixels under OrgMatter fill holes
OrgMatter AND PrevSegm
dilate AND OrgMatter
AND NOT NoBrainMask → Segm
fill holes → PrevSegm

end;

3 Results

The algorithm has been tested on 30 sets of MRI data; for an example of how the
data may look, see Fig. 5. The segmentation algorithm generates reproducible
results and can therefore be used as a segmentation tool for visualisation pur-
poses under clinical conditions. The algorithm has been visually evaluated on 30
patient data sets of transaxial, sagittal and coronal cases.

A problem that often occurs is that cranial nerves that link cerebral tissues
to extra-cerebral nervous structures cause bridges that the binary morphology
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(a) (a) (c)

Fig. 5. Segmented slices. a) A transaxial slice. b) A sagittal slice. c) A coronal slice.

does not break. However, when involving both grey-level dilations and erosions,
these bridges are almost always broken.

When a problem does arise it is possible to manually delete unwanted tissue
on a mask and restart the algorithm from that particular slice. In some rare
cases with extremely poor data, human interaction is necessary. In most MRI
data-sets the quality is much better than the algorithm requires and the need
for interaction is minimal.

4 Future Work

There will be further development of segmentation algorithms using grey-level
morphology and also including artificial neural nets (ANN) from a program
called BRAINS2 from the Mental Health Clinical Research Center, The Univer-
sity of Iowa College of Medicine and Hospitals and Clinics, Iowa City USA [8].
A large data base of coronal MRI scans is thus available at the HUBIN group.
There will be sufficient cases to do a more thorough and statistically relevant
testing of the methods developed.
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