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Abstract. In this paper, we exploit the theory of light scattering from
rough surfaces to estimate surface characteristics through reflectance
measurements. Here, we analyse the Beckmann formulation of the Kirch-
hoff theory We then suggest two classes of surfaces for hwhic the appro-.
priate techniques can be used for estimating the surface roughness, the
correlation length and the surface slope. Finally we show how the Beck-,
mann model can be fitted to reflectance data for materials with very-
rough surfaces. Since the Kirchhoff theory is inadequate for large angles
of incidence, we make use of a modification to the Beckmann model.
The osedprop techniques have significant tial inpoten computer vision
for texture model acquisition and realistic reflectance modelling.

1 Introduction

Reflectance modelling is a task of pivotal importance in the analysis of image
data. For instance, in computer graphics it is necessary for generating realistic
images of synthetic scenes. In computer vision, on the other hand, reflectance
models form the basis of shape analysis techniques such as shape-from-shading
and photometric stereo, and may also be used for surface analysis tasks which
may be used to estimate the physical properties of materials from passively
sensed image data [8]. In this paper we are interested in using reflectance models
to estimate surface roughness. This is a topic of current importance since recent
theories of surface texture have moved away from the naive idea that texture is
painted onto the surface. Instead, attempts are being made to understand the
formation of texture in terms of surface relief distributions [5–7]. As first observed
by Lambert, under diffuse reflection, surfaces without macroscopic roughness
appear equally bright from all viewing directions. For a rough surface, however,
the surface appears brighter as the viewing direction approaches the illumination
direction.

The Torrance-Sparrow model [11] is among the most popular models which
aims to incorporate the effect of roughness into the specular reflectance compo-
nent. The calculation of reflectance is based on geometrical optics, and is hence
applicable when the surface irregularities are much larger than the wavelength
of incident radiation. Nayar et al. [9] showed that under these conditions the
Torrance-Sparrow model approximates the physical optics model developed by
Beckmann [1]. Unfortunately these models ignore the effect of roughness on the
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diffuse component. However, this effect has been incorporated into the model de-
veloped by Oren and Nayar [13]. Van Ginneken et al. have recently developed a
model that can be used to predict reflectance from isotropic rough surfaces that
have both specular and diffuse components [8]. As mentioned earlier, the ma-
jority of the reflectance models used in the computer vision literature are either
very simple and hence ignore surface roughness (e.g. Lambertian model), or are
empirical or semi-empirical (e.g. [13]) in nature. There are reports of using either
semi-empirical models or improved semi-empirical models (e.g. [8]) in computer
vision. However, there has been relatively little effort expended at developing
purely physics-based models that account for directly measurable surface char-
acteristics. To address this omission, in this paper, we provide an analysis of
the physics-based model of Beckmann-Kirchhoff (B-K) for the scattering of light
from rough surfaces [1] and investigate how this model can be utilized for sur-
face roughness measurement from digital images. Our second contribution is to
develop techniques for fitting rough reflectance models to data.

Previous methods for determining surface characteristics, and in particular
roughness, work at long wavelengths and use special purpose instruments to
make reflectance measurements. However, we perform our experiments in the
visible region of the spectrum and make use of an ordinary digital camera. To
avoid possible noise, saturation or digitization artifacts, we compute the mean-
intensity value by averaging the measured reflectance values over a neighborhood
of points in the image. This technique agrees with the definition of mean optical
intensity from the Beckmann scattering theory [1]. Furthermore, we need to know
neither the strength of the light-source nor the surface albedo. The reason for
this is that the techniques discussed in this paper use the ratio of two intensities,
and not the absolute intensity values. For slightly-rough dielectrics, we use the
Beckmann model for the specular direction to estimate the surface roughness
σ. For very-rough dielectrics, our main contribution is as follows. We suggest
a method for estimating a measure of the surface slope σ/T , where T is the
correlation length. We do this using intensity values measured at two different
angles of illumination incidence. In practice, we capture the first image with
the planar surface perpendicular to the viewing direction. The second image is
captured with the camera and the object fixed, but the light-source direction
is moved by a predetermined amount. We then compute the mean-intensity
ratio, which we define as the ratio of the mean-intensity values from the two
images. From the mean-intensity ratio, we can compute σ/T using the B-K
model. Similar slope quantities have been used previously in the literature [1, 4].

2 Background
Roughness is a measure of the statistical variation in the topographic relief of a
surface [3]. The quantity can be obtained directly from surface-profile measure-
ments, or it can be calculated from a scattering measurement using a theoretical
model. Bennett [3] has stressed that there is no unique RMS roughness value for
a surface. However, we limit our study to homogeneous and isotropic surfaces
where assuming a single approximate value for the RMS roughness is feasible at
all locations. Much of the literature on rough surfaces assumes that the height
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distribution is Gaussian, i.e. W (z) = exp(−z2/2σ2) where σ is the measure
of roughness. However, evidence for the validity of the assumption that rough
surfaces posses Gaussian distributions is conflicting and depends strongly on
the nature of the surface being considered [10]. Unfortunately, the specification
of a height distribution and the RMS roughness is insufficient to discriminate
between surfaces with different length scales. Such surfaces may, however, be
distinguished on the basis of their correlation function. The theory of wave scat-
tering from rough surfaces [1] often assumes that surface correlation functions
are also Gaussian, i.e. C(τ) = exp(−τ2/T 2) where T is the correlation length.
When the height data have been measured relative to the mean surface level, the
RMS slope m can be defined as the root-mean-square of the slopes. Each slope
is the difference between the heights of the adjacent points divided by the data
sampling interval. The RMS slope is even more dependent on the measuring
instrument than is the RMS roughness [3].

The scalar theory treatment of scattering from rough surfaces is based on the
Helmholtz-Kirchhoff diffraction integral. To overcome some problems involved
in solving this integral, an approximation known as the Kirchhoff boundary
condition is made. This approximation limits the validity of the scalar theory
to the case of scattering close to the specular direction. Vernold and Harvey
[12] have recently modified the B-K theory to overcome this limitation and have
extended the theory to large angles of incidence and scatter. Here, we discuss
the Beckmann formulation of the scalar Kirchhoff theory which is most widely
used in the study of wave scattering from rough surfaces.

3 Beckmann-Kirchhoff Scatter Theory

By requiring that a surface has both a Gaussian height distribution and a Gaus-
sian correlation function, the Beckmann-Kirchhoff (B-K) theory leads to two
interesting cases. For a surface that is smooth or of intermediate roughness, the
following infinite series solution may be used to model the diffuse reflectance:

I(θi, θr, φr) = (πT 2F 2e−g/A)
∞∑

m=1

[(gm/m!m) exp(−v2
xyT

2/4m)] (1)

In this model, the incident beam has the zenith angle θi and a fixed azimuth
angle (φi = π), whereas the reflected beam has the zenith angle θr and the
azimuth angle φr (on local tangent planes). The expressions for vx, vxy, vz and
g are given by vx = k(sin θi−sin θr cosφr), vy = −k(sin θr sinφr) , v2

xy = v2
x+v2

y,
vz = −k(cos θi + cos θr) and g = σ2v2

z , where k = 2π/λ (λ is the wavelength).
The geometrical factor F is given by

F (θi, θr, φr) = (1 + cos θi cos θr − sin θi sin θr cosφr)/[cos θi(cos θi + cos θr)]

The parameter A is the area of a plane sheet on which the scattering coef-
ficient is defined [1]. For slightly-rough surfaces (g � 1) the series in Eq. (1)
converges rapidly. In practice, only the first term needs to be considered. As a
result the diffuse intensity for slightly-rough surfaces becomes
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I(θi, θr, φr) ≈ (πgT 2F 2/A) exp[−(g + v2
xyT

2/4)] (2)

When the surface is very-rough (g � 1), when compared to the test wave-
length, the expression for the diffuse reflectance is

I(θi, θr, φr) ≈ (πT 2F 2/Av2
zσ

2) exp(−v2
xyT

2/4v2
zσ

2) (3)

The B-K model depends on both the incidence (θi) and the reflectance
(θr, φr) angles. However, in computer vision it is mainly the incidence angle
behavior of the reflectance models that is of interest. For instance, shape re-
covery using shape-from-shading schemes is only tractable when the reflectance
model is only dependent on the incidence angle. Hence, here we derive a for-
mulation for the specific case when the angle between the light-source and the
viewing directions is small, and so θi = θr = θ and φr = π. In this case, Eq.
(3) can be simplified by replacing the quantities vz, vxy and F with the corre-
sponding functions of θ. Under the conditions assumed here, vxy = vx = 2k sin θ,
vz = −2k cos θ and F = 1/cos2 θ. Hence, in this case the B-K model reduces to

I(θ) ≈ (T 2λ2/16πAσ2 cos6 θ) exp(−T 2 tan2 θ/4σ2) (4)

3.1 Modified Beckmann-Kirchhoff Model

The B-K model fails for large incidence angles and large scattering angles. To
overcome this problem, Vernold and Harvey [12] have recently developed a mod-
ification of the B-K model that gives excellent agreement with experimental
scattering data from rough surfaces at both large angles of incidence and at
large scatter angles. The failure of the B-K theory to handle wide-angle scat-
tering and large angles of incidence has been highlighted by other authors [4]
too. In the Vernold and Harvey modification [12], the geometrical factor (F 2)
used in B-K model is replaced by the cosine of the incidence angle (cos θi) which
comes from Lambert’s cosine reflectance law. Hence, by replacing the term F 2

with cos θ (where θ = θi) in Eq. (3), the Vernold-Harvey modification to the
B-K model (for identical light-source and viewing directions) is

I(θ) ≈ (T 2λ2/16πAσ2 cos θ) exp(−T 2 tan2 θ/4σ2) (5)

3.2 Validity of Kirchhoff Theory

Kirchhoff theory is based on a single scatter model and hence does not account
for multiple scattering, which occurs at large values of the slope σ/T . When mul-
tiple scattering occurs, then a proportion of the incident intensity is absorbed
due to subsurface light scattering. Hence, Kirchhoff theory underestimates the
scattered intensity. Recently, Caron et al. [4] have attempted to model this effect
using the energy conservation rate. This is the ratio of the scattered energy to
the incident energy i.e. ξ = Esc/Einc. At normal incidence and for g � 1, they
have found an expression for ξ in terms of σ and T . In the physical case, where
0 ≤ θr ≤ π/2, then ξphys = 1 − exp(−T 2/4σ2). This model also accounts for
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missing energy due to subsurface scattering. This interpretation results from the
fact that when the scattering process is integrated over the range 0 ≤ θr ≤ π
then ξnon−phys = 1. Caron et al. also identify a second limitation of the Kirch-
hoff theory. Kirchhoff theory assumes that all locations on the surface receive
light. However, for rough surfaces under oblique incidence there are locations
that are not illuminated due to shadows cast by rough protrusions. To address
this problem, they have introduced a limit θ0 = π/2− tan−1(σ

√
2/T ) for angles

of incidence under which the predictions by Kirchhoff model are valid. Specifi-
cally, for angles of incidence greater than the angle of RMS slope θ0, the energy
scattered is significantly overestimated and the scattered intensity cannot be
calculated acceptably without shadowing functions [4].

4 Surface Characteristic Estimation

In this section, we discuss some techniques for estimating rough surface char-
acteristics. Specifically, we estimate the RMS roughness σ and the correlation
length T for slightly-rough surfaces (g � 1), and, the ratio σ/T for very-rough
surfaces (g � 1).

4.1 Estimating RMS roughness for slightly-rough surfaces

When the surface is smooth enough to produce a well defined specular beam, the
surface roughness can be determined from the relative intensity of the specular
beam [2]. According to the B-K model [1], this relative intensity is given by

ispec = exp [−(4πσ cos θ/λ)2] (6)

where θ is the incidence angle. Here, we determine an experimental value for
the relative intensity ispec by measuring both the total peak intensity Îtot at the
center of the specular highlight and the average diffuse intensity Îdif in the neigh-
borhood of the specular lobe. The relative intensity can then be approximated
using the formula ispec = 1 − (Îdif/Îtot). The wavelength λ of the light-source
and the incident angle θ are known. Hence, the RMS roughness is given by

σ = (λ/4π cos θ)[ln(1/ispec)]1/2 (7)

4.2 Estimating correlation length for slightly-rough surfaces

Here it is assumed that an estimate of the RMS roughness σ is available. First,
we measure two values of reflectance I1, I2 at a single point (in practice the
mean-intensity of the neighboring pixels) for two different angles of incidence
θ1 and θ2, so that the planar surface is perpendicular to the viewing direction
(θr = 0). Here we use only one wavelength λ. Under such illumination conditions
and from Section 3 we can write F (θi) = 1/ cos(θi), vxy(θi) = (2π/λ) sin(θi),
vz(θi) = (2π/λ)[1 + cos(θi)] and g(θi) = σ2v2

z(θi).
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Using Eq. (2), we find the equation for the ratio I1/I2. Since all of the param-
eters appearing in this equation except T are known, we estimate the correlation
length T using the equation

T = 2{[g(θ1) − g(θ2) + lnK]/[v2
xy(θ2) − v2

xy(θ1)]}1/2 (8)

where K = [g(θ2)F 2(θ2)I1]/[(g(θ1)F 2(θ1)I2].
4.3 Estimating surface slope for very-rough surfaces
For very-rough surfaces, we estimate the ratio σ/T using the B-K reflectance
model. Using these estimates, we can fit the B-K model to the reflectance data.
Such a model is potentially useful for several applications in computer vision such
as texture model acquisition and realistic reflectance modelling. The technique is
as follows. First, we measure two values of reflectance (I1, I2) for two incidence
angles (θ1, θ2) as described in Section 4.2. From Eq. (3), we first obtain the
equation for the ratio I1/I2. Using this equation, the ratio σ/T is

σ/T = (1/4 lnK)1/2{[v2
xy(θ2)/v

2
z(θ2)] − [v2

xy(θ1)/v
2
z(θ1)]}1/2 (9)

where K = [F 2(θ2)v2
z(θ1)I1]/[F

2(θ1)v2
z(θ2)I2].

5 Experiments
The study reported on this paper is one motivated by computer vision. Hence, we
intend to experiment using visible light and a digital camera. The images used
in our experiments have been captured using an Olympus 10E camera. Each
surface has been imaged under controlled lighting conditions in a darkroom.
The objects have been illuminated using a single collimated tungsten light-source
whose wavelength is approximately 700nm. The surfaces used in our experiments
are either slightly rough or very rough.

Fig. 1. Images of porcelain plate (left), glossy paper (centre) and plastic plate (right).

The slightly-rough surfaces are a porcelain plate, a white plastic plate and a
glossy paper. For each of these surfaces we capture one image under off-normal
illumination (θi = 14◦). These are shown in Fig. 1. Here, we use the B-K model
for the specular direction to find the surface roughness σ (Section 4.1). We also
estimate the correlation length T using the technique outlined in Section 4.2. We
present the resulting estimates in Table 1. Our estimates are in good agreement
with the ground-truth values found in the literature [10, 13] for similar surfaces.

Table 1. Results for the slightly-rough surfaces shown in Fig. 1.
Surface type ispec RMS roughness (µm) I1/I2 Correlation length (µm)

Porcelain plate 0.29874 0.06310 1.04716 0.30083
Glossy paper 0.23802 0.06878 1.04271 0.31057
Plastic plate 0.06491 0.09494 1.03179 0.36507

The very-rough surfaces used in our study are samples of stone tile, textured
wall paper and sandpaper. For each of these surfaces, we capture two images
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under two different incidence angles (30◦ and 45◦). These image pairs are shown
in Fig. 2. For these surfaces we use the method explained in Section 4.3 to find
the ratio σ/T . Since here the incident angles are greater than 20◦, we use the
Vernold-Harvey modification. Using the estimates of σ/T , we also compute the
angle of RMS slope θ0 and the energy conservation rate for the physical case
ξphys (Section 3.2). The results are presented in Table 2. The estimates are very
close to the actual values measured using the well known stylus method [2, 10].

Fig. 2. Image pairs of very-rough surfaces: stone tile (left), textured wall paper (centre)
and sandpaper (right) for θi = 30

◦ and θi = 45
◦ respectively (θr = 0).

With estimates of σ/T available, we can fit the B-K model to the real-world
data. To do this, we construct a cylindrical surface using the sample of sandpaper
previously used (Table 2). We illuminate the cylinder in the viewing direction.

Table 2. Results for the very-rough surfaces shown in Fig. 2.
Surface type I1/I2 σ/T θ0 (degs.) ξphys(%)

Stone tile 1.0562 0.9126 37.77 25.93
Wall paper 1.0696 0.7654 42.73 34.74
Sandpaper 1.0877 0.6483 47.48 44.83

We use the estimated value of σ/T for the sample of sandpaper to fit the
model to the data in the following way. Across a horizontal line, perpendicular
to the axis of the cylinder, we compute the mean-intensity at each point (on
the right-hand half-cylinder) by averaging the intensity values of its vertical
neighbors. Fig. 3 shows mean-intensity as a function of incidence angle as a solid
curve.
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Fig. 3. Intensity-mean (solid) across a cylindrical sandpaper against incidence angle;
the original (dash-dot) and modified (dashed) B-K model; Lambertian model (dotted).

Here, we show the Lambertian model (dotted curve), the original B-K model
(Eq. 4, dash-dot curve), and the modified B-K model (Eq. 5, dashed curve). In
this plot, for incidence angles less than almost 50◦, the data fits well to the mod-
ified B-K model while it deviates significantly from the Lambertian model. The
original B-K model only fits well to the data for small incidence angles. There
are a number of different reasons why the B-K model does not match the data
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at all locations on the cylinder. The main reason is the multiple scattering phe-
nomena [10, 4] which is not included in the Kirchhoff’s single scattering theory.
For the sample of sandpaper used here, ξ = 44% suggests the possibility that
the scattered energy may have been misestimated by a number as 44% when
the Kirchhoff theory is used. This prediction is close to the experimental results.
Also, θ0 = 47◦ is very close to the incidence angles above which the Kirchhoff
theory is expected to fail.
6 Conclusions
In this paper, we have analysed Beckmann formulation of the Kirchhoff’s the-
ory. The aim here has been to develop simple methods for estimating surface
characteristics using a light-source and a digital camera. We estimate the RMS
roughness and the correlation length for slightly-rough surfaces, and the surface
slope for very-rough surfaces. This estimated slope allows the B-K model to be
fitted to real-world data. While the modified B-K model fits to the data, the
original B-K model only fits well to the data for small incidence angles. The re-
sults indicate that physics-based reflectance models can be used in conjunction
with simple experimental instruments to make surface roughness measurements.
Hence, we believe that the proposed techniques have significant potential in com-
puter vision for texture model acquisition and realistic reflectance modelling.
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