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Abstract. In this paper we describe a new strategy for using local structure
adaptive filtering in normalized convolution. The shape of the filter, used as the
applicability function in the context of normalized convolution, adapts to the lo-
cal image structure and avoids filtering across borders. The size of the filter is
also adaptable to the local sample density to avoid unnecessary smoothing over
high certainty regions. We compared our adaptive interpolation technique with
conventional normalized averaging methods. We found that our strategy yields a
result that is much closer to the original signal both visually and in terms of
MSE, meanwhile retaining sharpness and improving the SNR.

1   Introduction

Conventional interpolation techniques often rely on either one or two input signal
characteristics such as the signal amplitude (bilinear interpolation), the arrangement of
sampled signals (natural neighbor interpolation [1]), or the certainty of signals (nor-
malized convolution [2]) but never all of them. While the existing framework of nor-
malized convolution is efficient in finding a local representation of the signal incorpo-
rating the signal uncertainties, it does not take the signal structures into account. In
fact, when interpolation of sparsely sampled signals is concerned, the neighborhood’s
structural content should play an important role in shaping the missing values. This
paper points out how adaptive filtering can be used in conjunction with normalized
convolution to take advantage of both signal certainty and structural content in image
analysis problems.

The structure of the paper is as follows; we start with a short description of nor-
malized averaging. We then introduce adaptive parameters into the applicability func-
tion, starting from sizes then shapes of the filter. The sizes of the filter vary according
to the local sample density and the shapes are steered towards the local signal struc-
ture, which comprises of orientation, anisotropy and curvature. Finally, comparisons
are made between our adaptive method and other interpolation techniques with respect
to mean square error (MSE), peak signal-noise ratio (PSNR) and a sharpness measure.
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2   Normalized Averaging

Normalized convolution (NC) [2] is a method for local signal modeling that takes
signal uncertainties into account. While the applications of normalized convolution are
numerous, the simplest and most striking example is interpolation of incomplete and
uncertain data using the special case called normalized averaging (NA). In this recon-
struction algorithm, an interpolated value is estimated as a weighted sum of neighbor-
ing values considering their certainty and applicability, in which applicability refers to
the influence of the neighbors towards the interpolated value (see equation 1).
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where r denotes the reconstructed version of the measured signal s with the certainty
c; the normalized averaging is done via two convolutions (*) with the applicability
function a. This applicability function is usually modeled by a localized function such
as the Gaussian function. Since Gaussian filtering has a very fast recursive imple-
mentation [3], the NC reconstruction algorithm is efficient while giving reasonable
results (see figure 1b).

a b c d

Fig. 1. (a) original image. (b-d) Results of normalized averaging reconstruction of the image
from 10% of the original information, with the applicability function being: (b) the Gaussian
function: ��= 1, (c) the Knutsson applicability function: 3r− , (d) the local structure adaptive
applicability function: 1 1

2 2
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3   Scale Adaptive Applicability Functions Based on Sample
Density

Since interpolation favors the contribution of a closer pixel over a distant pixel, a
commonly used applicability is the Gaussian function. However, practical Gaussian
kernels decrease rather gradually near the center and they are often truncated outside a
certain radius for implementation efficiency. These characteristics impose a constant
smoothing factor on the image while the function support is not large enough to re-
cover big missing blobs of data. Sharp functions with large support have been sug-
gested [2][4], however this is not the real solution to the problem. To minimize the
unnecessary smoothing and maximize the spatial support, a scale-adaptive filter that
shrinks or grows depending on the local sample density should be used.
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We define local sample density as ( , )dens x yσ �such that densσ  equals the radius of a
pillbox, centered at position (x,y), that encompasses a total certainty equal to one. For
a missing sample image c : IR �{0,1}, densσ  is the distance to the nearest pixel with
c=1, which relates to the Euclidean distance transform [5]. For images with arbitrary
certainty ranging from zero to one, we filter the input certainty by a bank of pillbox
filters with increasing radii. The radius corresponding to a response of one is found by
a quadratic interpolation of the filtered results.

4   Shape Adaptive Applicability Functions Based on Local
Structure

While a variable-sized applicability function solves the problem of excessive image
smoothing, it does not guarantee the continuity of the signal structure. This drawback
can be seen in figure 3c where the reconstructed image, though visually informative,
shows severe edge jaggedness. A natural approach to solve this shortcoming is making
the applicability function adaptive to the underlying signals structure. In other words,
it is desirable that the reconstructed image patch shows the same oriented pattern as its
surrounding neighborhood, if there is any. The corrupted samples therefore should be
more similar to the high confidence pixels along its linear orientation. As a result,
anisotropic filters should be used as the applicability functions. The problem remains
as how to estimate the local structure of an image with missing samples. Fortunately,
(differential) normalized convolution [2][6] offers a way to estimate the image gradi-
ents from incomplete and uncertain data. We can then construct the gradient structure
tensor (GST) [7][8] to analyze the local linear structures.

Local image structure at a certain scale can be characterized by orientation, anisot-
ropy and curvature. These parameters can be extracted using the regularized gradient
structure tensor T as shown in equation 2, where the eigenvector u

�
 corresponding to

the largest eigenvalue uλ  determines the local orientationφ ; A andκ denote local
anisotropy and curvature, respectively. Note that the curvatureκ is computed from the
differential of the mapping ( ) ( )exp 2M jφ φ=  rather than on the orientation itself
which contains jumps between +/-  [9].
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The idea of a shape-adapted smoothing is not new. Adaptive filtering that shapes
the smoothing kernel after the principal components of the inverse GST has been
proposed by a number of authors [10][11]. Here, we introduce curvature to the filter
by bending the same anisotropic Gaussian applicability kernel. The directional scales
of the kernel before curvature bending are given by:

(1 )u densC A ασ σ= − (1 )v densC A ασ σ= + (3)
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where the scaling is based on the adaptive scale parameter densσ  (see previous sec-
tion), an additional term C that may encompass the local signal-to-noise ratio, and the
degree of structure enhancement depends on the anisotropy A through an exponent α.

Special attention needs to be given to the application of the gradient structure ten-
sor to incomplete data. Computation of the gradient image can be done in either three
ways: (1) reconstruct the image by normalized convolution and compute the gradient
from this result, (2) using normalized differential convolution NDC [2], (3) using the
derivative of the normalized convolution equation (in contrast to the normalized con-
volution result) DoNC [6]. An extensive evaluation [6] for natural images, all three
methods: gradient from normalized convolution result, NDC and DoNC show compa-
rable performance over a wide range of SNR’s. Due to the variable sample density of
our input images, we use the first method where the gradient is estimated from an
initial image reconstruction using NC with scale-adaptive isotropic Gaussian applica-
bility. The Gaussian scales of the gradient operator and the tensor smoothing for the
GST is set to one and three respectively.

Fig. 2. (a-c) Image transformation for the local structure adaptive filtering: curvature bent and
rotated to be resampled (at the white dots) by bilinear interpolation. (d) look-up Gaussian kernel
with sampled coefficients at the white dots.

4.1   Implementation Details

In the reconstruction experiment given in figure 1, all input samples are lined up prop-
erly on the sampling lattice. This makes it very easy to collect the neighbors’ positions
and look up the corresponding filtering coefficients. However, our adaptive normal-
ized convolution technique also works on randomly sampled signals. The most chal-
lenging task is then how to compute the kernel of an off-grid centered filter. Continu-
ous normalized convolution (CNC) [4] approximates the coefficients by truncating the
Taylor expansion up to the first order. The method, relying on the first-order partial
derivative kernels at every pixel, is therefore not suitable for our varying applicability
function. Furthermore, CNC cannot accurately approximate Gaussian kernels of sigma
smaller than 1, which is often necessary when little smoothing is required.

Here we present a filter construction approach that uses a large look-up Gaussian
kernel. The size of such kernel is chosen such that most commonly used smaller ker-
nels can be easily extracted from the master kernel by pixel-skipping subsampling. For
example, a master kernel of size 121x121 hold coefficients of any kernel with sizes
from {3,5,7,9,11,13,21,25,31,41,61,121}. In fact, we only use kernels with a right
combination of these sizes such that the distance between adjacent resampled positions
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on the input image is less than the resolution grid. In this way, we can minimize the
kernel size at each pixel while still satisfy the resampling condition (figure 2). With
this simple scheme, Gaussian coefficients need not be recomputed for on-grid centered
kernels. Coefficients for off-grid centered kernels can also be estimated from the
master kernel using bilinear interpolation. Such an interpolation scheme allows accu-
rate approximation of any Gaussian kernels with sigma greater than 0.3 grid size.

Table 1. MSEs and PSNRs of the reconstructed Lena images from 10% original information

Random
10% of
Lena image

Knutsson 3r−

applicability
function, fig.1c.

Gaus����� ���
fig. 1b.

Scale-adaptive
isotropic
Gaussian

Shape and scale
adaptive Gaus-
sian, fig.1d.

MSE 31449 126.13 88.23 88.32 43.77
PSNR 3.15 27.12 28.67 28.67 31.72

5   Experiments on Image Reconstruction from Missing Samples

In order to compare the result of the adaptive normalized averaging with the tradi-
tional normalized averaging method, the same experiments as presented in [2] are
carried out. In the first experiment, the famous Lena image has been randomly sam-
pled to a test image containing only 10% of the original information. The reconstruc-
tion results have been shown earlier in figure 1. A quantitative comparison is pre-
sented in table 1. The second experiment involves reconstruction of the same image
having large missing regions (see figure 3 and table 2). While the standard normalized
averaging can fill in the ‘holes’ with ‘plausible’ data [2], the adaptive filtering ap-
proach really proves its strength by being capable of extending local linear structures
into the missing regions.

a b c d

Fig. 3. (a) Lena ‘hole’ image with large missing blobs. (b-d) Results of normalized averaging
with the applicability function as (b) the Knutsson applicability function, (c) the isotropic scale-
adaptive Gaussian function, (d) the local structure adaptive Gaussian function (eq. 3).

With the lowest MSE and the highest PSNR (equation 4), adaptive applicability
function clearly outperforms other listed applicability functions. It is also interesting to
note that the Knutsson applicability function scores poorly for both quantitative tests
even though the results are claimed to be better than the Gaussian function [2].
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Table 2. MSEs and PSNRs of the reconstructed regions from the Lena ‘hole’ image

Lena image
with holes,
fig.3a.

Knutsson 3r−

applicability
function, fig.3b

Gaus����� �	 Scale-adaptive
isotropic
Gaussian, fig.3c

Shape and scale
adaptive
Gaussian, fig.3d

MSE 7235 133.21 106.11 83.63 41.05
PSNR 9.54 26.89 27.87 28.91 32.00

This is due to the fact that the fixed Knutsson applicability function is only signifi-
cant in the very center while having near-zero values elsewhere. Though this is desir-
able for high certainty regions, low certainty regions are not reconstructed very well.
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To prove the superior in sharpness quality, we use the sharpness comparison
measure by Dijk et. al. [12]. The method is described as follows: a scatter diagram
composed of a set of data points is plotted such that the coordinates of each data point
correspond to the gradient magnitudes of the two tested images at the same image
location. Data points below the line y=x correspond to pixels with a higher gradient
magnitude in the first image than in the second. Those points favor the sharperness of
the first image over the second. Pixels above the line y=x, on the other hand, favor the
smootherness of the first image over the second. Normally, these two types of data
points are always present in a scattergram because an image is filtered for both detail
enhancement and noise suppression. As a result, the gradient magnitudes of edge pix-
els increase while those of noisy background pixels decrease. However, due to the
higher gradient energy that edge pixels possess, they form a cluster of data points that
extends further away from the origin than the cluster formed by the noisy pixels. A
line going through the origin can be fitted to each cluster, resulting in a slope for the
degree of edge sharpening or noise smoothening accordingly.

As can be seen from both scattergrams in figure 4, the majority of data points form
a cluster below the y=x line. The result from the diagram on the right is not as clear
though because what is really reconstructed in the Lena ’hole’ experiment is the con-
tinuation of the image linear structures rather than the image gradient. This sharpness
measure agrees with the subjective perception of the better quality of the reconstructed
images using our adaptive method over Knutsson’s fixed applicability function.

6   Conclusion and Further Research Directions

We have demonstrated that normalized convolution with adaptive applicability is an
attractive framework for signal analysis that takes signal uncertainties as well as local
structures into account.

The application of this framework in the interpolation of incomplete and uncertain
data image yields a method that sharpens edges, suppresses noise and avoids edge
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Fig. 4. (left) Gradient magnitude scattergram of the reconstructed Lena images from a random
10% of the original information using adaptive Gaussian (horizontal axis) and Knutsson appli-
cability function (vertical axis). (right) similar scattergram for the Lena ‘hole’ experiment.

jaggedness by extending local image orientation into the low certainty regions. The
comparisons of visual sharpness, MSE and PSNR on the reconstructed images show a
significant improvement of the new method over existing normalized convolution
based interpolation techniques.

Apparently, normalized averaging is not the only technique for image reconstruc-
tion. Image inpainting [13] also reconstruct missing sample images by extending iso-
phote lines from the exterior into the missing regions. However, different from our
non-iterative adaptive normalized averaging method, image inpainting is a diffusion
process that takes many iterations to propagate orientation and image grayscale into
the restored areas. The information to be propagated is computed from the intact sur-
rounding area. As a result, image inpainting is only suitable for the restoration of dam-
aged photographs and movies or the removal of small objects where the majority of
image information is present. For example, the algorithm would give a satisfactory

a b c d

Fig. 5. Comparison of our image reconstruction with Sapiro’s image inpainting: (a) our recon-
struction from 10% original information, (b) an unsuccessful inpainting result for the same
experiment in (a), (c) our reconstruction for one of the missing holes in the Lena ‘hole’ experi-
ment, (d) same hole reconstruction by inpainting. Notice the continuation of the hair structure
reconstructed by our algorithm as opposed to the mean gray level filling-in from inpainting
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result in the Lena ’hole’ image experiment, but not when 90 per cent of the image data
is unavailable (see figure 5). In addition, due to the discrete implementation of diffu-
sion, the computation of the gradient vector fields is not as robust to noise as done
with the gradient structure tensor. Image inpainting also cannot handle irregular sam-
ple input as is possible in our adaptive filtering approach.

Future research will focus on the application of adaptive normalized convolution in
other problems such as image denoising, video restoration, data fusion, optic flow
computation and compensation and super-resolution. The local structure adaptive
filtering scheme presented in this paper can also be extended to the local structure
neighborhood operators, in which more robust estimators than the weighted mean (as
used in normalized convolution) can be used to approximate the local data.
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