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Abstract. Measurement of motion in transabdominal ultrasound sequences of

the small bowel is hampered by the unstructured, textured appearance of the 

images. We investigate a method of measuring Optical Flow in the sequences, 

based on an analysis of the spatio-temporal frequency spectrum. The method

requires no unrealistic assumptions about the distribution of energy in the 

frequency spectrum and extends readily to deal with the aperture problem. 

Evaluation on synthetic image sequences indicates it has advantages in

accuracy and precision of velocity estimates. Qualitative evaluation on real

ultrasound sequences indicate encouraging performance, provided occurrence

of the aperture problem is identified and appropriate processing applied. 

1 Introduction 

This study forms part of a project to identify methods of measuring peristaltic motion

in transabdominal ultrasound sequences of the bowel. Accurate motion measurements 

could make it possible to use transabdominal ultrasound, rather than barium radiology

with its high radiation exposures, as the initial radiological investigation for patients 

with suspected or recurrent bowel disease. The appearance of inflammatory bowel

disease in ultrasound sequences involves thickening of the bowel wall and reduced or 

absent peristalsis (motion of the bowel). Interpretation of the images can be difficult, 

and there are many equivocal cases. The ultrasound image appearance is mainly 

amorphous and textured with little or no recognisable structure. When bowel structure

is apparent it shows highly variable, constantly changing shape. Figure 3(a) shows 

part of a typical frame; the marked points refer to analysis described in section 3. The

peristaltic movement of the bowel appears as slow movements of textured regions.  

The literature on image motion measurement is vast, and it cannot be reviewed 

other than superficially here. For this application we discount methods that involve 

tracking of identifiable structures (e.g. [1, 2]), as ultrasound images often give rise to

spurious features (e.g. [3]). Studies of motion in ultrasound images have largely 

concerned echocardiogram sequences, where there is clear image structure (albeit

noisy). The absence of recognisable features that can be modelled suggests that

optical flow – detecting the changes in the brightness pattern - may be a more useful

approach to the bowel ultrasound images. Optical flow methods may be thought of in 

two types: gradient-based methods (mainly improvements or variations on the
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original proposal by Horn and Schunk [4, 5], for example [6]), and methods that make 

use of the frequency-domain spectrum.  The textured (“noisy) appearance of the 

images renders gradient-based (differentiating) methods unpromising.  Baraldi [7] 

conducted an evaluation of several gradient-based methods on different synthesized 

sequences simulating ultrasound scatterers and detectors.  There was considerable 

variability in results depending on the nature of the simulation, and considerable 

spatial smoothing was required in all cases.  Similarly Mailloux [3] rejected several 

gradient based methods on echocardiogram sequences, again noting that to obtain 

useful performance significant image smoothing was required.  

Frequency domain methods make velocity estimates by integrating over some 

neighbourhood in space and time, and provide a potentially useful avenue of 

investigation. The principles underlying frequency domain methods of optical flow 

are straightforward.  

The energy in the Fourier spectrum of a 2D signal, f(x,y), moving with constant 

translational velocity (u,v), resides entirely in a plane in frequency  

(ωx, ωy,ωt) space, the orientation of which is determined by the velocity. Estimating 

the velocity is equivalent to estimating the orientation of this plane [8]. 

The most well known approaches to doing this are those of Bigün et al. [9], Fleet et 

al. [10], and Heeger [8]. Bigün et al formulate the problem as an eigenvalue problem 

but their method involves calculating derivatives in space-time, and is therefore not 

suitable for our application. An important issue in optical flow is dealing with the 

aperture problem. It may be possible to make reliable velocity estimates only in the 

direction normal to the local image gradient (we might speak of “normal flow” rather 

than “full flow”). Fleet et al [10] suggest that isocontours of the local phase (rather 

than amplitude) provide a more robust indicator in these circumstances. Liu et al [11] 

have found Fleet’s method to be very noise sensitive. Our own investigations [12] 

support this and we find the same to be true of Bigün’s method.  

Heeger’s method estimates the velocity by sampling the local power spectrum 

using Gabor filters tuned to particular spatio-temporal frequencies. The plane 

orientation, and hence the velocity, can be estimated by minimising the difference 

between predicted and observed outputs of the filters. While Heeger’s method appears 

to fulfil our requirements, in application to synthetic images we have found the errors 

in velocity estimation to be larger than we would like (see figure 2). We believe this is 

due to two problems. Firstly Heeger’s method makes the assumption that the energy 

of the spectrum is uniformly distributed within the plane. This condition is difficult to 

meet even with realistic synthetic images, and is highly unlikely to be satisfied by real 

data. Secondly, the method is likely to give unreliable results in the presence of the 

aperture problem. Heeger proposed that the error surface in (u,v) space is ridge-

shaped, rather than a minimum, when the aperture problem applies. Barron et al. [13] 

suggested a heuristic method of identifying this condition, though in our experience 

this does not always work well for real image data [14]. 

It is easily shown [12] that when the aperture problem arises, the energy is 

concentrated into a line in frequency space. Measuring the normal flow component 

amounts to calculating the orientation of the line.  
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2 Estimating the velocity 

Here we describe a method of estimating the velocity by direct search in frequency 

space. At each point x (x,y,t) for which we wish to calculate a velocity we seek a 

maximum in the power in a plane (“full-flow”) or a line (“normal-flow”) in its power 

spectrum defined by a given (θm,ϕm) over all (θ,ϕ) in a hemisphere. No assumptions 

are required concerning the distribution of energy in the line or plane. However, we 

need to retain the assumption that the motion consists of uniform translation. In any 

realistic situation, this assumption will not generally hold over extended regions of 

space and time. Ideally we would make velocity estimates at individual points in 

space-time, but we need data over some spatial and temporal extent to be able to 

calculate the FTs. We compromise by calculating the velocity for a volume of space-

time centred on the point x at which the velocity is required. For our experiments 

(section 3) we use cuboids of 133 points for full-flow analysis and 72×13 for the 

normal-flow, (reflecting the one-dimensional spatial extent of the sample).  These 

values are, of course somewhat arbitrary, and were chosen to be compatible with the 

support region for Heeger’s Gabor filters.  

To conduct our search we need a method of calculating the power in a given plane or 

line and an optimisation strategy.  

2.1 Calculating the power 

We have two choices for calculating the power in a plane or line: by calculating the 

FT and working in frequency space or directly from the spatio-temporal data.  In 

either case we make use of some standard results concerning the Fourier transform 

[15].  The rotation theorem allows us to calculate the power in any plane or line by 

rotating the volume of data by (-θ,-ϕ) and calculating the power in the plane ωt=0 or 

the line (ωx=0, ωy=0). For any rotated volume of space, we can calculate the FT and 

sum the power values over the plane ωt=0 or along the ωx axis.  To calculate the 

power using the space-time domain data we use two further theorems. Consider the 

case of full-flow analysis.  To obtain the integrated power in the plane ωt=0 we need 

to multiply the spectrum by a filter, which has the value 1 everywhere in the plane 

and 0 elsewhere.  This is just a delta function δ(ωt), the FT of which is a constant.   

By virtue of the convolution theorem we can achieve this in the spatio-temporal 

domain by convolution with a constant function in the time axis only.  For a truncated 

volume of data the power in the plane ωt=0 can be simply estimated by summing in 

time the data values at each (x,y) position, then summing the squares of the result over 

the plane (Rayleigh’s theorem). 

Either of these approaches allows us to measure the power in any chosen plane of 

frequency space, without making any assumptions about the distribution of power 

within that plane.  A similar approach can also be taken to measure the power in a line 

for normal-flow analysis.  Which approach to take is entirely a matter of efficiency.  

In our experiments we used the space-time convolution for full-flow and the FT for 

normal-flow.   
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2.2 Estimating the orientation 

We evaluate two methods of locating the line or plane. 

Multi-scale (coarse-to-fine) search of (θ,ϕ) space:  Each scale is selected by gaussian 

convolution of the rotated volume.  At each scale an exhaustive search is conducted 

over a 3×3 neighbourhood of the (θ,ϕ) map centred at the value of (θ,ϕ) yielding the 

maximum power at the previous scale.  In our experiments we have used 10 scales.  

 Principal Component Analysis (PCA) of the spectrum: This provides a means of 

distinguishing between full-flow and normal-flow conditions.  If the spectrum is 

predominantly linear, one of the eigenvalues will be much greater than the other two.  

If it is planar, there should be two similar eigenvalues, much higher than the third.  

The orientation is specified by the eigenvector whose eigenvalue is either the highest 

(in the case of a line) or lowest (in the case of a plane). 

This initial estimate of plane or line orientation by either method can be refined by 

local search at the finest scale.  In the experiments described below, we use the fmins 

function in the MATLAB optimisation toolbox, which is an implementation of the 

Nelder-Mead (simplex) method [16].  

3 Experiments 

3.1 Quantitative evaluation: synthetic data 

Two types of synthetic images were used to conduct quantitative evaluations. 

Random texture image:  an image of random grey levels, providing an approximation 

to a texture of uniform energy from which full-flow analysis should be possible. 

Random lines image:  a random 1-D pattern is projected to form lines at a given 

orientation. Full-flow analysis is impossible, but we should be able to calculate 

normal-flow, the direction of the flow vector being normal to the lines.   Although 

these images show a preferred direction, no image gradient is present. 

For each of these image types a synthetic sequence was generated by simulating 

motion of the image in various directions at different speeds.  

Figure 1 is an illustration of the (θ,ϕ) maps that result from application of the full-

flow and normal-flow analyses to the random texture and random line images. Where 

the method seeks a plane in the full-flow case or a line in the normal-flow case, a 

peak is obtained in the map. When the method is applied in the “wrong” condition 

(seeking a plane in the normal-flow case, for instance) the result is a sinusoidal ridge. 

Figure 2 shows a comparison between full-flow estimation in a synthetic sequence 

(1282 pixels), using our implementation of Heeger’s method and the full-flow method 

using coarse-to-fine search. The velocity (u, v) in this case is (0.3, 0.7) pixels per 

frame. The absolute value in the mean error (not easily discernible in the figure) is 

0.26 pixels per frame for Heeger’s method and 0.03 pixels per frame for our direct 

search method. The improvement in the dispersion of values is obvious, reduced from 

a standard deviation of 0.15 to 0.02 (on absolute velocity). 
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Fig. 1. Examples of (θ,ϕ) maps for synthetic sequences with velocities of (0.5,0.5). Full-flow 

analysis applied to the random texture image (a) and the random line image (b) (lines at 30º). 

Normal-flow analysis applied to the random texture image (c) and the random lines image (d).  

Where analysis and flow conditions match there is a peak, where they do not there is a ridge 

 

 

 

 

 

 

 

 

 

 

 Fig. 2. Distribution of error in the u-component of a random-texture sequence, measured using 

Heeger’s method (a) and direct search (b). The mean error is reduced (see text) and the 

dispersion is greatly reduced. Similar results are obtained for the v-component 

Quantitative results on flow measurement on synthetic sequences are summarised 

in Table 1. Each result is derived from a number of synthetic uniform motion 

sequences of a square of 31×31 pixels (961 velocity estimates) with combinations of 

(u,v), each in the range 0..1 (a requirement of both Heeger’s method and ours). 

Twenty translation sequences were used for full-flow experiments, eighteen for 

normal-flow (6 different velocities and 3 different orientations of the line pattern). 

The mean and s.d. for both components of the velocity: mu , mv , σu , σv are shown. 

The error for each sequence is the difference between the true velocity and the mean 

(u -mu, v-mv). Four variants of our search strategy are compared: coarse-to fine search 

or PCA providing initial estimates, with and without local search.  

The errors in velocity estimates and the dispersion of estimates are small for all 

four search algorithms, both for full-flow and normal-flow analyses.  Direct 

assessment of the line or plane by PCA alone is the least successful of the methods.  

However, using PCA as a starting estimate, subsequently refined by local search 

produces results hardly distinguishable from coarse-to-fine search.  Local search 

following coarse-to-fine search produces very little improvement in accuracy or 

precision of velocity estimates. The difference between PCA with local search and 

coarse-to-fine search is more marked in the case of normal-flow analysis, where the 

coarse-to-fine search achieves better estimates. 
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Table 1. Summary of velocity estimation errors for the synthetic sequences (a) Full-flow 

estimates on the random-texture sequence. (b) Normal-flow estimates on the random-lines 

sequence. The search strategies are PCA or coarse-to-fine (C-F) on its own or followed by local 

search (+S). |eu| and |ev| are the average values of the absolute errors in each sequence. σu and 

σv are the average values of the standard deviations of velocity measurements. 
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PCA PCA 

+S 

C-F C-F 

+ S 

0.014 0.011 0.006 0.005 

0.043 0.03 0.013 0.013 

0.007 0.02 0.028 0.028 

0.016 0.028 0.06 0.06 

Method PCA PCA 

+S

C-F C-F  

+ S

|eu| 0.063 0.017 0.019 0.019 

|ev| 0.066 0.02 0.022 0.019 

σu 0.025 0.027 0.028 0.027 

σv 
0.024 0.028 0.028 0.026 

3.2 Qualitative evaluation: medical ultrasound sequences 

    .  
a b 

Fig. 3. (a) Single frame from an ultrasound sequence of the small bowel. The marked points 

have been positioned for tracking (see text). Very little structure is visible. Some of the marked 

points form a circle corresponding to the circumference of a cross-section of bowel which is 

just discernible in the centre of the frame. 

(b) A frame from an echocardiogram sequence with points marked for tracking. 

Evaluation on real data is of necessity a more subjective exercise than on synthetic 

data, due to the absence of ground truth. Even subjective assessment is difficult in the 

case of the bowel images because of the lack of consistent structure. To assist in the 

qualitative evaluation we use, in addition to the bowel ultrasound sequences, 

echocardiogram sequences of the left ventricle in which anatomical structure is much 

clearer, making visual assessment of motion easier. One of our original design criteria 

was to find a method of optical flow estimation that would give us results in the 

absence of structure.  However, the presence of structure should not be a disadvantage 

to our direct search method, as we need no assumptions about the distribution of 

power in the line or plane.  Figure 3 shows frames from a bowel sequence (a) and an 
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echocardiogram sequence (b). In both cases certain points have been marked, and we 

use these points to evaluate the flow methods by tracking. On each frame the velocity 

is calculated at each point and its position on the next frame estimated. Good 

estimates of velocity will result in the points “tracking” the underlying structure. 

(Recall that we are not “tracking” by structural correspondence.) The results of this 

evaluation cannot be visualised on paper, as it is necessary to watch the sequences 

unfold. Here we describe the subjective assessment of tracking using full-flow 

analysis and normal-flow analysis, both by coarse-to-fine search. 

While tracking in the bowel sequence appears usually (but not always) convincing 

using full-flow analysis, the results with the echocardiogram sequence are poor; 

tracking in this case is extremely unstable. This is unsurprising, since the pronounced 

structure results in conditions where the aperture problem will arise. Improved 

tracking results are obtained in both sequences by using normal-flow analysis.  In the 

echocardiogram sequences the normal-flow tracking is extremely stable. 

4 Conclusions 

The Frequency-domain approach to optical flow is not widely used.  In their 

evaluation of optical flow methods, Barron et al. [13]  found that Heeger’s method 

performed as well as other methods on synthetic image sequences, though they had 

difficulty in applying it to realistic images due to its failure on occasions to converge.  

The more recent evaluation by McCane et al [17] did not evaluate any frequency-

domain methods, nor did they use any sequences that closely synthesized the 

properties of the bowel ultrasound images.  Our use of the frequency-space approach 

arises from a rejection of other methods due to experience of others, argument from 

principle and some objective evaluation [12].  The wide variety of approaches in the 

literature means that we cannot claim to have exhaustively and rigorously considered 

all possible alternatives.  For example Black and Anandan [18] show useful results of 

robust patch tracking on synthetic images similar to those that we have used, although 

the real sequences they used are not comparable to the bowel sequences.  

We have developed our frequency-space method of measuring optical flow method 

in response to the requirements of a particular, challenging application. We know of 

no previous study that has attempted to measure motion in transabdominal ultrasound 

sequences. This method is applicable in other areas of application in which a 

frequency-domain approach to optical flow is appropriate. It demonstrates greater 

accuracy and precision than Heeger’s method (in our hands) when applied to 

synthetic motion sequences. It offers the additional benefits of being more generic in 

requiring no restrictive assumptions about the power distribution in the image 

spectrum, of dealing naturally with the presence or absence of the aperture problem 

and of being conceptually straightforward. The accuracy and precision on synthetic 

sequences and the stable results on real sequences provide encouragement that 

realistic motion estimates are possible in real medical ultrasound investigations.  A 

key issue in these applications is the ability to recognize and deal naturally with the 

aperture problem. 

 

577Estimating Motion in Ultrasound Images of the Small Bowel



References 

1. S. Ullman, The interpretation of visual motion. Cambridge, MA: MIT Press, 

1979. 

2. A. Singh and P. Allen, "Image flow computation: an estimation-theoretic 

framework and a unified perspective", CVGIP - Image Understanding, 56, 152-

177, 1992. 

3. G. Mailloux, A. Bleau, M. Bertrand and R. Peticlerc, "Computer analysis of 

heart motion from two-dimensional echocardiograms", IEEE Transactions on 

Biomedical Engineering, 34, 356-364, 1987. 

4. B. Horn and B. Schunk, "Determining optical flow", Artificial Intelligence, 17, 

185-203, 1981. 

5. B. Horn and B. Schunk, "Determining optical flow - a retrospective", Artificial 

Intelligence, 59, 81-87, 1993. 

6. A. Verri, F. Girosi and V. Torre, "Differential techniques for optical flow", 

Journal of the Optical Society of America.  A, 912-922, 1990. 

7. P. Baraldi, A. Sarti, et al., "Evaluation of differential optical flow techniques on 

synthesised echo images", IEEE Transactions on Biomedical Engineering, 43, 

259-272, 1996. 

8. D. J. Heeger, "Optical flow using spatio-temporal filters", Int.J. Computer 

Vision, 1, 279-302, 1988. 

9. J. Bigün, G. H. Granlund and J. Wiklund, "Multidimensional orientation 

estimation with application to texture analysis and optical flow", IEEE Trans. 

PAMI, 13, 775-790, 1991. 

10. D. J. Fleet and A. D. Jepson, "Computation of component image velocity from 

local phase information", Int. J. Computer Vision, 5, 77-104, 1990. 

11. H. Liu, T.-H. Hong, M. Herman and R. Chellapa, "Accuracy vs. efficiency 

tradeoffs in optical flow algorithms", proc. European Conference on Computer 

Vision, Cambridge, U.K., 1996, pp. 174-183. 

12. D. H. Cooper, "Methods for Motion Estimation in Medical Ultrasound 

Imaging", University of Manchester, Ph.D. Thesis, 2000. 

13. J. Barron, D. Fleet, J. and S. S. Beauchemin, "Performance of Optical Flow 

Techniques", Int. J. Comput. Vis., 12, 43-47, 1994. 

14. D. H. Cooper and J. Graham, "Estimating motion in noisy, textured images: 

Optical flow in medical ultrasound", proc. British Machine Vision Conference, 

Edinburgh, Scotland, 1996, pp. 585-594. 

15. R. N. Bracewell, The Fourier Transform and its Applications, 2 ed: McGraw-

Hill, 1986. 

16. W. H. Press, S. A. Teukolsky, W. T. Vettering and B. P. Flannery, Numerical 

Recipes in C: The Art of Scientific Computing, 2 ed: Cambridge University 

Press, 1992. 

17. B. McCane, K. Novins, D. Crannitch and B. Galvin, "On benchmarking optical 

flow", Comput. Vis. Image Underst., 84, 126-143, 2001. 

18. M. J. Black and P. Anandan, "The robust estimation of multiple motions: 

Parametric and piecewise-smooth flow fields", Comput. Vis. Image Underst., 

63, 75-104, 1996. 

 

578 D.H. Cooper, B.R. Madsen, and J. Graham


	1 Introduction
	2 Estimating the velocity
	2.1 Calculating the power
	2.2 Estimating the orientation

	3 Experiments
	3.1 Quantitative evaluation:synthetic data
	3.2 Qualitative evaluation:medical ultrasound sequences

	4 Conclusions

