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Abstract

The method of Faugeras and Keriven for solving the multiple view stereo problem
by partial differential equations (PDE’s) in a level set implementation has been well
received. The main reasons are that it produces good results and deals effectively with
objects which are, topologically, more complex than a ball. This makes it a good choice
for the final step in the usual structure from motion approach, namely making a full 3D
surface reconstruction from estimates of camera orientations and 3D point structure.

Here an approach is proposed whereby the 3D point structure, estimated using
structure from motion, is used to initialize the method of Faugeras and Keriven. The
proposed approach has the advantage of a) considerably improving the run time of the
approach, and b) making it more resistant towards noisy data and data with patches of
low variability. Both advantages make the approach much more effective on real data.

1 Introduction

The estimation of surface models from multiple images, the so—called multiple view
stereo problem, is one of the classical problems within computer vision (e.g. [4,8,10,16]).
Some of the best results are achieved by Faugeras and Keriven by posing the problem as
a partial differential equation PDE [2,3,4], this has been further developed in [7]. Some
of the merits of this approach are, that it in a naturally way employs all the images
simultaneously as opposed to the adapted 2 image stereo approaches (e.g. [10,16]) and
that it is capable of dealing with objects of arbitrary topology.

Another major problem of computer vision is the reconstruction of structure and
motion of a rigid object from an image sequence, the so—called structure from motion
problem. Here the usual approach is to first restrict the 3D structure estimation to a
few distinct points whereby the structure is represented as a point cloud (e.g. [6]). As a
part of this point based structure from motion the camera calibration is also determined
— outer and often also inner orientation. But for many applications of structure from
motion a full 3D model is needed, and hence a multiple view stereo approach is natural
(e.g. [5,14]).
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We propose using the PDE based surface estimation approach of Faugeras and
Keriven [4] to solve the surface estimation problem from the structure and motion so-
lution based on points. The contribution of this work is altering the approach by using
the structure estimates, in the form of the 3D points, to much better initialization of the
PDE based surface estimation algorithm. This has the effect of reducing the running
time of the algorithm considerably. On a standard 1 GHz PC the order of magnitude
is from whole and half days to an hour or often less. Secondly, the proposed approach
also renders the algorithm much more resistant to noisy and/or erroneous data, as well
as to objects with patches of low variance. Both these issues make the approach more
effective with real data.

2 PDE Based Surface Estimation

As a courtesy to the reader and to introduce notation, a short overview of PDE based
surface estimation is presented. For a more through introduction the reader is referred
to [2,3,4,7].

Camera A

Camera B

Fig. 1. Based on the Lambertian assumption, the projection of a given surface point, should look
the same in different images. A property that will, in general, not hold for image points being
projections of different 3D points.

The main idea behind PDE based surface estimation is illustrated in Figure 1,
namely that the projection of points on the physical surface should look the same in
all images. The implication is that the true physical surface, §*, is the minimizer of:

S* :argmin/ P(x)dA (D
S Js

where ¢(x) is a similarity measure of the projection of x in all the cameras. The basic
similarity measure used in [2,3,4,7] and here is; given neighborhoods of the projection
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of x in camera 4, denoted ;. Then

1
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where p(-, -) denotes the correlation and v;; (x) is an indicator function denoting whether
x is visible in both image ¢ and 7 or not.
The PDE determining the gradient flow of S is then:

9 _ V(@) n+aC , 3)
ot

where n is the local normal to the surface S, C is the local curvature, which is basically
a second order smoothing term. The constant o determines the amount of smoothing
imposed. Since the neighborhood patches, N, are warped according to the local orien-
tation of the surface at x, a term dependent on n should also be present in (3). As noted
in [7], this missing term is so similar to the local curvature that it can be dropped'. This
is done here.

It should be noted, that Jin et al. [7] use the median instead of the mean in (2).
Hereby an approach which is robust towards a break—down of the Lambertian assump-
tion is obtained.

2.1 Implementation

The PDE of (3) is used to optimize (1) in a level set framework [11,12,15]. An important
issue in this regard, is how to initialize the optimization scheme. The usual initialization
scheme [2,3,4,7], is to use a bounding ball or box, which contains the surface with
probability 1 ( c.f. Figure 2).

An issue with this approach is it speed. The evaluation of a given voxel of the level
set grid is very costly, in that each patch, A;, should be warped in all images, and
pairwise correlation between these patches should be estimated. Due to the warping,
pre—calculation of intermediate results is infeasible. Hence, if a large change of volume
is required, as illustrated in Figure 2, many costly evaluations are needed, and the ap-
proach will be very time consuming. In order to address this problem it is proposed [4]
to add an inward force to (3). This inward force is set to zero if #(x) > Pyax, such
that it is “turned off” when the fit is *good’. This has the advantage of speeding up the
approach, and as far as we can see, it also help avoid local minima, in that at such local
minima it can be assumed that &(x) < @,ax. Hence (3) is in reality changed to:

aa_f =~ (Vo(x)" 1+ aC + G(&(x)) ,

where G(®(x)) is the inward force. Even with this inward force, an optimization is
not unlikely to take the better part of a day on a standard PC, due to the large change
required in S.

! This slightly changes the interpretation of a.
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The inward force G(®(x)) has some unintended side effects, since $(x) can be
small on the true optimal surface S*. This fact is usually caused by image noise and/
or a low variability on part of the object in question. In cases of small $(x) on the true
surface, S* , G(P(x)) will cause the evolving surface, S, to pass through $*. Note that

aC +G(P(x)) ,

acts as a prior on the surface, and as such determines the behavior of the algorithm when
V&(x) is small (c.f. Figure 4 ).

True Surface

Linear Approximation

Usual Initialization

Fig. 2. The true surface and different initializations of the surface before optimization. It is seen,
that the Area — or Volume in 3D — to be traversed for convergence is usually much smaller for the
linear approximation.

3 Utilizing the 3D Point Structure

In the usual structure from motion setting, the camera orientations and a 3D point struc-
ture is estimated first. These estimates are then used as the basis of a full 3D surface
model estimation. If the method of [2,3,4,7] was used for this, only the camera orien-
tation would be applied. Hence the information from the already estimated structure is
discarded.

We here propose using this 3D point structure by forming a much better initial
guess. This is done by applying the method of Morris and Kanade [9], to make an
optimal triangulation of the 3D point structure already at hand. This triangulated mesh
is then used as an initialization for the level set. Since the elements of the 3D point
structure are assumed to lie on the surface, this mesh can be seen as a piecewise linear
approximation to the surface (c.f. Figure 2). A practical consideration in this regard
is how to convert the mesh to a signed distance field, the latter being an initialization
for the level set method. This is done with a modified version of [13] described in [1],
whereby the signed distance from each voxel to the mesh is calculated. The sign is
positive if the voxel is outside the mesh, and negative if it is inside.
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(a) (b)

Fig.3. (a) A sub image from the face sequence of 5 images. The subject moved slightly during
the taking of the images. (b) The initialization used with the face data set, when the proposed
method is applied.

The first advantage of this approach is that the initial guess is very likely to be much
closer to the true surface, c.f. Figure 2. Hence the run time is reduced considerably, in
that smaller changes in S is need . In our experiments the order of magnitude of speed
up is from whole to half days to approximately 1 hour.

Secondly, the proposed approach has the advantage of not needing the inward force
G(®(x)). Hence the prior on the surface becomes:

aC . 4)

The difference is that if the data does impose a force on S, due to the above mentioned
reasons, then it should try to smooth out instead of go inward. This makes the approach
much more resistant to image noise and surface parts with low variability.

4 Results

To validate the proposed approach, we used 5 images of a face as illustrated in Fig-
ure 3(a). This data set was noisy, in that it is unlikely that the subject was completely
still. Secondly, there are many patches with very low or no variance. As such this is a
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Fig. 4. An intermediate iteration in face sequence, when using an inward force, G. It is seen how
the surface has "gone through’ the true surface, S*. In later iterations the holes will get bigger,
and eventually the smoothness constraint of (3) will pull the surface from §*, whereupon it will
collapse under its own curvature.

rather challenging data set for a surface reconstruction algorithm, but it is by no means
below the standard of what is expected in a structure and motion setting. The quality of
the data also makes a solution with an inward force, G, infeasible as seen in Figure 4.
It is seen how the surface has ’gone through’ the true surface, S*. In later iterations the
holes get bigger, and eventually the smoothness constraint of (3) will pull the surface
from S*, whereupon it will collapse under its own curvature.

The proposed approach was also applied. It was initialized with the mesh depicted in
Figure 3(b). This mesh is optimally triangulated based on a 3D point structure estimated
by structure from motion from a series of automatically identified landmarks. The result
is seen in Figure 5(a), where it is noted that the algorithm converges to an acceptable
result, despite the quality of the data.

To improve the results, the use of more advanced regularization was investigated. It
turned out that most of the problematic data was at low variance patches. Hence, it was
tried to smooth patches, A;, with low &(x) more. From a histogram of &(x), it was
deducted that 0.5 was a good cut off. Hence (3) was modified to

08 _ [ -V&(x)-n+aC d(x) > 0.5 5)
50 = =05 -Vé(x) -n+15-aC  H(x) <05 °
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(@ (b)

Fig. 5. (a) Proposed method on the face data set, see Figure 3(a). (b) Proposed method on the face
data set, see Figure 3(a). Here the extended regularization of (5) was used.

The result is seen in Figure 5(b). In the results of Figures 5(a) and 5(b) a was set to
0.25. Here it is seen that this extended regularization improves the result, implying that
extended regularization is a fruitful path.

5 Discussion

A new approach for PDE based surface estimation has been presented for use in the
usual structure from motion framework. This approach uses the estimated 3D point
structure to initialize the optimization, whereby a significant speed up and resistance to
poor data is achieved. Both these issues are vital when performing structure and motion
on real data.
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