Simplified Vehicle Calibration Using Multilinear
Constraints

H. Stewenius

Centre for Mathematical Sciences
Lund Institute of Technology
Box 118
SE-22100 Lund, Sweden
stewe@maths.lth.se

Abstract

An Autonomously Guided Vehicle using both odometry and visual data for navi-
gation needs calibration parameters. These include camera placement as well as
parameters relating odometry to vehicle motion. Calibration of these parameters
is related to the Hand-Eye calibration problem. Instead of using a calibration
target or trying to solve for structure and motion a novel method using the con-
tinuwous multilinear constraint to test parameter combinations is proposed. A low
order polynomial target function is calculated in linear time over the sample size
resulting in very fast iterations in the optimisation step.

The method is tested on simulated data and increased sample size improves the
parameter estimates.

1 Introduction

This paper describes a novel method for vehicle calibration of an autonomous
guided vehicle AGV. The vehicle uses both odometry and visual data in navi-
gation. The general structure of the vehicle is known and motion of the vehicle
as well as for the camera can be computed from signals in the vehicle if certain
parameters are supplied. The problem to calibrate these parameters is related
to Hand-Eye calibration. The problem of self-calibration on an AGV is not of
purely academic interest as industrial AGVs are usually custom built for a spe-
cific customer by joining a control and camera system to a robot vehicle from
different suppliers and it is not in this case certain that all parameters are well
known or at least well known to the control unit. The environment where cali-
bration has to be performed is usually unknown. A longer introduction to one
such system can be found in [5].

For AGV the previous attempts at calibration has required a known map and the
computation of this map either required the map to be known from measuring
it by hand or by measuring it with a vehicle with known parameters. Another
possibility would be to use the camera data to build a map without odometry
information. This is possible but very time consuming as well as not perfectly
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stable.

In the related field of Hand-Eye calibration three different tracks for comput-
ing the Hand-Eye relation are visible. The first of these is to use a well known
calibration target [9], the second is to compute structure and motion and the
third to compute motion from the motion field, [4]. We use the standard camera
projection equation

Au = PU, (1)

where u is the image point, P camera matrix and U real world coordinates of the
point. The camera and vehicle calibration parameters  together with odometry
data o can be used to calculate the camera motion.

P(tx) = P(z, o).
It is possible to get the global motion of the vehicle, but this involves integration
of odometry data over time. A typical problem here is that small errors accu-
mulate to produce large errors over time. Odometry is better suited on a short
time scale. One could in theory use the ordinary camera equation (1) to find
the calibration parameters but this would require solving for the unknown scene
points as well.

Using multilinear constraints has several advantages. Firstly, the constraint
involve camera motion P and image motion u alone. The projective depth A
and the scene structures U are eliminated. Secondly the constraints involve only
relative motion. Thus at each time instant and image point, we are free to use a
different coordinate system for the camera motion.

2 Computer Vision and Vehicle Motion

Multilinear constraints

The multilinear constraints tell us if a certain camera movement is coherent with
respect to the images from this camera. In order to understand the matching
constraints in the case of continuous time, it is necessary to take a look at
the corresponding constraints in the discrete time case. For a more thorough
treatment, see [3]. Alternative formulations of the same type of constraints can be
found in [1, 8]. The first order discrete multilinear constraint in space is equivalent
to

det [PO U1 0] =0

Pl 0 (751
and can be rewritten as
=0. (2)

The first order continuous multilinear constraint is equivalent to

P u0
P"LI,"LL:|=O (3)

det [ P() (5% 0:|

P, — Py —up uy

det [
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2.1 Vehicle and camera motion
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Fig. 1. Vehicle geometrical parameters

If odometry is to be used for navigation it is important to choose a vehicle
for which the wheels are non-slipping. One such vehicle is a three-wheeled cart
which is controlled by front wheel velocity v and angle s. For the motion of a
camera centred in (2o, yo) relative to the centre of the rear axis we have [7]

Vg —zgsin(s)/L
vy| =v |yosin(s)/L — cos(s)
[ vsin (s)/L

To simplify coming calculations we substitute [ = 1/L , X = z9/L, Y = yo/L
and get

Vg — X sin (s)
vy| =v |Ysin(s) — cos(s)
0 vsin (s)l

As seen, all motion and motion derivatives can be computed from the signals
(v, s) and the parameters (I, X,Y). With A the (3 x 3) camera calibration and
orientation matrix relative to the vehicle coordinate system it is now possible to
compute the (3 x 4 ) camera matrices P and P. They are

1000
P=A10100
0010
and
000 0
P=A100 6 —Xvsin (s)

0 —0 0 Yusin (s) — vcos (s)

The equations for a system with differential steering are very similar.
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3 Calibrating the Vehicle

It is now possible to assemble the continuous multilinear constraint

A 0 u 0
000 0
det | 410 0 6] 4 —Xwsin (s) u® | =0 )

0-60 Yvsin (s) — v cos (s)

The matrix M (¢, z) is polynomial in z = ([, X,Y,, {a;}). Therefore det M(t, z)
is polynomial in z. As equation (4) has to be fulfilled for all times we have one
equation for every time and only 12 unknowns. In order to avoid the trivial
solution we impose ||4||r = 1. To solve this problem in a least squares sense, i.e.
to solve

min Z(det M(t;,z))?
z i
AllF =17

F(z)

we compute F(z). Unfortunately F'(z) is of to high degree and contains to
many coefficients to be easily optimised. For this reason a two stage method
has been implemented assuming that the intrinsic parameters of the camera are
known, that is, A4 is a rotation matrix.

Step 1, estimating one axis of the camera

Motion is restricted to pure translation by setting s = 0 and v # 0. With
Py, = [I0] it is possible to write P, = [I T| where T is a translation in the
forward direction of the vehicle and equation (2) can now be rewritten

det [—AT —up uq] = 0. (5)
The translation T is along the length-axis of the vehicle so T = ||T|| [0 0 1]. The
camera rotation

ay az ag
A= |asasagl|,
a7 ag ag

with A3 = [43, ae, ag]T the third column of A. Equation (5) can be rewritten as
det [Ag Ug Ul] = 0. (6)

This equation has to be fulfilled for all pairs of measurements along a straight
path. An optimal value for A3 is found by minimising

Zdet [A3 U; uj]z. (7)

i3
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Here Aj is a column of a rotation matrix hence ||A3|| = 1. The fastest way
to perform this minimisation is to compute the sum symbolically with A3 as
unknowns and then use svd [2] to find the minima.

Step 2, estimating the remaining camera parameters

Assuming internal calibration of the camera to be known and A3 computed up
to sign. As ATA =1 and det (A) = 1 there is only one degree of freedom left for
A. Introduce

—ag*xag a6 a3
B — | —akas —ag ag
[e4 [e3
« 0 ag
with
a=4/a} + a?
and
cos¢ sing 0
C(¢) = |—sing cosp 0
0 01

All possible A can now be written

A(¢) = BC(¢)

_ asag cos(§)taesin($) —asagsin()tascos(d)
— | —asa9 cos(¢§l+a3 sin(¢) _ asas sin(g)—',-as cos(¢) as

(¢4 . (o4
a cos(¢) asin(@) ag
Using this A the continuous multilinear constraint i.e. det (M) in equation (4)
is computed. It turns out that det (M) is a linear combination of 11 monomials,
that is

11
det (M) = Z cigi(cos ¢,sin @, 1, X,Y).
i=1

When computing det (M)? this is a linear combination of 44 monomials, that is,

44

(det (M)*) = Y Cipi(cos ¢,sin 6,1, X, Y).

=1
The polynomial (det (M))? is of total degree less than 8 and has the following
properties

— The degree of trigonometric components is a most 4

— The degree of [ is a most 2
— The degree of (X,Y) is a most 2

These coeflicients can be added for several observations and used to calculate a
least squares solution for our parameters given our observations.
The coefficients can be found in [7].
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Optimization Step In the second step F (I, X,Y) is a second order polynomial
X and Y with computed from (I, ¢) . The function F' is written

FUXY) = (X ¥]a.9) 3] + 800 [ 100
minimizing this over (X,Y) and assuming det (a) # 0 we get
. 1 ) _
(I)I{I,I}I}) F(l’ ¢’ X’ Y) = _ZIB(Z’ ¢) Oé(l, ¢) 1/8(l’ ¢) + ’Y(l’ ¢)

which enables us to optimise in two variables instead of in four variables.

4 Numerical Experiments
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Fig. 2. Error reduction by increased sample size

Code used for the experiments below is available on the authors home-page

[6]-

Step 1

This step was tested with white noise in the data. It is clear from these experi-
ments that the estimate for A3 is improved by using a higher number of samples
in the computation. This effect is visible for the stars of figure 2. The errors can
also be reduced by computing the mean over several experiments.
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Step 2

In this step there are problems coming both from errors in the first step, bias
errors from using time-steps that are not infinitesimal and noise in image mea-
surements that are amplified by the use of small time-steps. As in step 1 is is
possible to reduce the error by increasing the sample size, this is shown in figure
2.

As seen in figure 3(a) there is a bias when determining (X,Y’). This errors
comes from that the equations used in step 2 assume time-steps to be infinitesi-
mal. The reason for not using infinitesimal time-steps is that this would lead to
an infinite amplification of signal noise. In the estimates of inverse length [ this
bias is very weak while it disappears when estimating camera matrix A.

In this theoretical setting the bias can be eliminated by Richardson extrapola-
tion.

When there are errors in the computation of As these errors propagate to
the second step. In figure 3(b) is shown the effect of errors added to Az on the
variables computed in the second step.

(a) Bias in X and Y against (b) Effects of distortions in As
time-step used

Fig. 3.

5 Summary and Conclusions

The method is a nice and new alternative to full reconstruction and works well
at least for synthetic data. It is possible to use a very similar approach for a 4
wheeled cart with differential steering.

Further Work

It would be interesting to expand the system for cameras that are to a larger
extent unknown. This should be quite straight forward but quite messy as the
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number of polynomial coefficients will grow substantially. The elimination of
the bias is important and it would be interesting if it was possible to explicitly
calculate the error without use of the Richardson extrapolation scheme.

Of obvious interest is to test the method on a real AGV as only this can show
if the results presented are relevant.
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