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Dept. of Biomedical Engineering, Linköping University, SE-581 85 Linköping, Sweden
{knutte,matsa}@imt.liu.se, www.imt.liu.se/mi

Abstract. The question of which properties of a local structure estima-
tor are important is discussed. Answers are provided via the introduction
of a number of fundamental invariances. Mathematical formulations cor-
responding to the required invariances leads up to the introduction of
a new class of filter sets termed loglets. Using loglets it is shown how
the concepts of quadrature and phase can be defined in n-dimensions. A
number of experiments support the claim that loglets are preferable to
other designs. In particular it is demonstrated that the loglet approach
outperforms a Gaussian derivative approach in resolution and robustness
to variations in object illumination. It is also shown how a measure of
the certainty of the estimate can be obtained using the consistency of
the generalized phase with respect to orientation.

1 Introduction

The first steps towards analysis of images were taken more than 30 years ago.
From the very start detecting edges and lines in images was considered a fun-
damental operation. Since these early days new and more advanced schemes for
analysis of local image structure has been suggested in a seemingly never end-
ing stream. Local image orientation, scale, frequency and phase are prominent
examples of features that have been considered central in the analysis.

Apart from sheer curiosity, the main force driving the research has been the
need to analyze data produced by increasingly capable imaging devices. Presently
produced data are also often intrinsically more complex. Both the outer and the
inner dimensionality can be higher, e.g. volume sequence data and tensor field
data respectively.

Regardless of this development the first stages in the analysis remain the
same. In most cases the processing starts by performing local linear combinations
of image values, e.g. convolution operators. Perhaps somewhat surprising after
thirty years of research the design of these filters is still debated. In fact the
object of this paper is to contribute to this discussion in a way that hopefully
will help in bringing it to and end.

2 Estimation of Orientation and Motion

There is a strong correspondence between the problems of estimating velocity
and estimating signal orientation. If the signal is band-limited so as to not contain
frequencies above the Nyquist limit the problems are in fact identical. For the
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case of constant illumination this identity is manifested in the Fourier domain by
that all non-zero values can be found on a plane through the origin. The normal
to the plane, n̂, is directly related to the velocity through:

v =
P x n̂

P t n̂
(1)

Where: P x projects n̂ onto the spatial frequency plane
P t projects n̂ onto the temporal frequency axis

Invariances and images of reality - In a Newtonian world the true motion
and orientation of a rigid object is a well defined entity that is obviously inde-
pendent of the visual appearance of the object itself. When orientation and/or
velocity is estimated using images it is, however, equally obvious that the proper-
ties of, for example, the imaging device, the light sources and the object surface
directly influence the transfer of pertinent information, see e.g. [1]. For this
reason, a fundamental part of any estimation method is the incorporation of
appropriate Invariances. The implications of a number of important invariances
are discussed below.

Fundamental estimate behaviour - For a single highly localized feature
it is, all else being equal, desirable to maximize spatial locality of the feature
estimate. Retaining feature identity also requires that the estimate is smoothly
varying and centered on the feature1. These two requirements counteract each
other in a fundamental way and there exist many possibilities to define a mea-
sure of goodness. Reasonable definitions will, however, produce similar results.
We have decided to use the traditional uncertainty product as a quality measure,
[2], as this product is relatively shape tolerant and yet severely punishes large
deviations from the desired behavior.

Sample shift invariance - In most cases the signal and the sampling process
are not synchronized and it is natural to require that estimates are insensitive to
the precise space-time position of the sample grid. For a properly band-limited
signal a shifting of the signal by ∆x can be obtained by multiplying the Fourier
transform F (u) by e−iuT ∆x . The upper left part of fig.3 shows the spatial signal
computed at eight different positions over a period of one pixel. The magnitude
of the test signal in the FD is shown in the adjacent plot. A cos(u/2) frequency
function is chosen as it is the most spatially concentrated band-limited signal
there is, [2]. This signal will efficiently reveal any sampling shift dependencies in
the signal processing.

Invariance to the ‘signal section’ - Estimates of object velocity should
be invariant to the image of the object itself. A generalization of this statement
is that for a fully oriented signal, i.e. s(x) = g( [I − n̂n̂T ] x ) estimates of
the orientation, n̂, should be invariant to the ‘signal section’ g(·). This seemingly
harmless and simple requirement has far reaching consequences. It is equivalent
to the statement that the estimation of the normal of the non-zero plane in the
1 It would be reasonable to require a unimodal response but we will not do so as it

may be perceived as giving our approach to much of an advantage.
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Fourier domain should be invariant to what the signal looks like in the plane. To
make the following argument as clear as possible we will discuss the case with
only one spatial dimension where the non-zero plane reduces to a line. For the
estimate to be invariant to the signal on the line it is required that the ratio
between the filters involved are the same everywhere on the line. This must hold
for all line orientations implying that the Fourier domain ratios between the
filters involved can depend only on orientation. Perhaps the simplest example of
such a set of filters is the Gaussian derivative filters used in traditional optical
flow analysis which in the Fourier domain is given by:

Gk(u) = uk G(u) = ρ G(u) cos(ϕk) (2)

Where: G(u) is a Gaussian,
ρ is the radius in the frequency domain and
ϕk is the angle between u and the uk axis.

We will, however, show that a better set of filters can be found.

Invariance to illumination - Many image processing tasks require that the
analysis is insensitive to spatio-temporally varying lighting conditions. In partic-
ular, it is natural to make the analysis invariant to the following two properties
when object motion estimation is the task:

• Slowly varying mean level.
• Slowly varying signal amplitude.

The analysis can be made invariant to certain classes of such variations by the
use of suitable filters.

Loglets - We will in the following assume that changes in illumination can be
modeled as an addition of a low order spatio-temporal polynomial to the image
of the moving object2. Invariance to illumination can then be obtained by using
filters that are orthogonal to the subspace spanned by the polynomial basis. We
here introduce a new set of filters termed loglets which naturally lend themselves
to this purpose and in addition have a number of other useful properties. Loglets
have distinct similarities to the filter-banks introduced by Knutsson, [3], and are
polar separable in the Fourier domain as opposed to e.g. Gabor filter-bank ap-
proaches [4, 5].

Radial part - The radial function set, Rs(ρ), is given by:

Rs(ρ) = erf[α log(
βs+ 1

2

ρ0
ρ)]− erf[α log(

βs− 1
2

ρ0
ρ)] (3)

Where: s is an integer defining the scale of the filter
β>1 sets the relative ratio of adjacent scales
α determines the filter shape and overlap

This function set was designed in the spirit of the wavelet approach and has

2 This simplifies the following discussion but for this assumption to be reasonable the
logarithm of the image signal should be used.
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Fig. 1. Six loglets separated by one octave and the sum.

features particularly interesting in this context: 1. The limit β → 1 yields a
lognormal filter [3]. 2. The sum of Rs(ρ) over all scales is a constant in the
Fourier domain (as opposed to a lognormal filter set). 3. ∂n

∂ρn Rs(ρ) = 0; ∀n or in
wavelet vocabulary Rs(ρ) has an infinite number of vanishing moments, [6]. The
latter makes the continuous loglets orthogonal to polynomials indicating that the
suitability for the present purpose. In practise discrete loglets will have to be
used naturally limiting the number of vanishing moments. Discrete loglets can
be optimized using multiple subspace criteria as outlined in [7]. Figure 1 shows
Rs(ρ) for a sequence of scales and the sum.

Multi-dimensional directional part - The directional part can be defined
for multi-dimensional signals and consist of a set of vector functions, Dk(û)
given by:

Dk(û) =
(

1
û

)
(ûT n̂k)2a (4)

Where: û is a unit vector in the frequency domain
n̂k is a filter directing unit vector
a ≥ 0 is an integer setting the directional selectivity of the loglet

The vector valued loglet is given by the product of the radial and the directional
parts.

Lsk(u) = Rs(ρ) Dk(û) (5)

The directional filters span a spherical harmonics space of order 2a + 1 and can
simply be constructed as a weighted sum of spherical harmonics basis functions.
In this way filtering results for a large number of orientations can be obtained
in a highly efficient way. Also note that the odd part of Dk(û) corresponds to
the the Hilbert transform in the 1-dimensional case and the Riesz transform for
higher dimensions, [8].

Generalized Quadrature and Phase - Applying the loglets to a d-dimen-
sional signal will produce an (d+1)-dimensional vector response signal, q, for
each loglet. The amplitude, q, of the response is simply defined as the norm of
the response and the generalized phase, θ, as the normalized response, i.e.

q = ‖q‖ and θ = q̂ (6)

This definition of phase is identical to the definition due to Knutsson presented
in [9] and [10]. For 1-dimensional signals it reduces to the classical amplitude
and phase of the analytic signal [11]. More recent related work can be found
in, e.g. [12]. The construction of classical quadrature filters, [3], is based on
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the analytic signal and requires a pre-defined filter direction. The generalized
quadrature approach elegantly removes this requirement.

The generalized phase concept also naturally lends itself to a further ex-
tension. An order n phase can be defined by including spherical harmonics of
order 0 to n in the vector part of eqn. 4. This significantly increases the number
of filter involved but will also provide a proportionally higher descriptive power.

The local structure tensor - Representation of orientation has had a long
standing central position in the development of the image processing framework
of today. In 1978 Granlund suggested a representation for 2-dimensional ori-
entation, [4]. The requirements for representing 3-dimensional orientation were
discussed and outlined by Knutsson 1985 [13]. In 1987 this work lead to the
formulation of the local structure tensor approach, [14], that is now common
practise.

In order to take the quadrature/gradient comparison one step further we
will use the Gaussian derivative outer product matrix suggested by Bigün and
Granlund, [15]3. Although the two approaches are fundamentally different they
end up using the same orientation representation which allows for a direct com-
parison. To make the comparison as fair as possible a slightly modified form
involving squared quadrature filter magnitudes is used:

T =
∑

k

‖qk‖2 Mk (7)

Where: qk are the responses from single scale loglets
Mk are the filter orientation tensors, [16, 10]

It should be noted, however, that the difference in the tests below due to this
modification is, in fact, completely insignificant.

Phase consistency based certainty - Certainty measures have played
an important role in many image processing applications. A new measure of
certainty in orientation can be obtained using generalized phase.

cθ =
‖∑

k qk‖∑
k ‖qk‖

(8)

Ideally the phase should be the same for all n̂k making cθ = 1. A varying phase
will produce a smaller value. This certainty measure captures information that
differs from the traditional certainty based on the eigenvalues of T : cλ = λ1−λ2

λ1
,

see section 3 and fig.6.

3 Results

The first experiment is based on the test signal described in section 2 which
is shown in the upper left part of fig.3. The local energy is computed using both
gradient and quadrature filters. The quadrature filter is designed to mimic the
gradient filter for positive frequencies, see fig2. The dotted LP-filter is used to
average the square of the gradient response. Figure 3 shows the result, the σ

3 In this work orientation representation is not the issue, the approach is based on a
least squares problem formulation and no mention of tensors is made.
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−3 −2 −1 0 1 2 3 −π −π/2 0 π/2 π −2 −1 0 1 2 −π −π/2 0 π/2 π

Fig. 2. Compact support quadrature and gradient filters in the spatial (left) and the
Fourier (right) domain. The dotted LP-filter is used to average the square of the gra-
dient response.

1-D signals Spectrum 1-D signals Spectrum

−π −π/2 0 π/2 π −π −π/2 0 π/2 π

−π −π/2 0 π/2 π −π −π/2 0 π/2 π

Fig. 3. Signals and corresponding spectra. Left/top: Original signal. Left/bottom:
Squared quadrature output. Right/top: Squared gradient. Right/bottom Averaged
squared gradient.

of the low-pass filter is chosen such that the variance of the spectrum is equal
for the quadrature and gradient filters, see table1. Note that this σ is a bit too
small to completely remove the two peaks in the gradient image. From fig.3
and the uncertainty relation in table1 it is obvious that the localization of the
quadrature filters are superior compared to the conventional gradient filters. The
experiment was carried out in two scales and in both experiments the width in
the spatial domain (and the uncertainty product) is more than 25% smaller for
the quadrature filters. The apparent aliasing in the top right of fig.3 may suggest
that the performance of the gradient method can be improved by oversampling.
The results for the large filters in table 1 shows that this is not the case.

The next experiment comprise a 2D spatio-temporal test signal where a small
dark object is moving in front of a moving background, fig.4 left. Also, for test
purposes, a slight vertical shading has been added. The velocity (or orientation)
is estimated by both quadrature filters and gradient filters. The gradient filters in
fig.2 where used but the quadrature filters are now loglets. The orientation errors
where estimated from the gradient outer product matrix and the quadrature
tensors as:

∆φ = sin−1

√√√√ 1
2L

L∑
l=1

||n̂ n̂T − ê1ê
T
1 ||2

Small filters Large filters
σx σu σxσu σx σu σxσu

Loglets 0.894 0.566 0.506 1.672 0.300 0.502
Gradient 1.106 0.567 0.627 2.224 0.300 0.667

Table 1. Variances and uncertainty products for the quadrature and gradient responses
in fig.3. Theoretical uncertainty min value is 0.5. The table comprise two different
scales. The left part correspond to the filters in fig.2 and the right part to more LP
oriented filter sets with a larger spatial support.
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Fig. 4. Left: two dimensional spatio-temporal test image. Note the slight vertical
shading. Orientation error on spatiotemporal test image for gradient- (middle) and
quadrature- (right) filters.

no shading with shading
gradient 13.5◦ 30.5◦

quadrature 11.7◦ 12.5◦

Table 2. Orientation error.

where ê1 is the ‘largest’ eigenvector and n̂ defines the true velocity (orientation)
of the image. The results are displayed in fig.4. It is apparent that the slight
shading present in the signal misleads the estimation of the velocity using the
gradient approach. If the shading is removed the performances are more similar
but the quadrature approach still outperforms the gradient approach most likely
due to better localization properties, see table2. The last experiment refer to

Fig. 5. Super quadrature filter in the FD. From left: orientation selective envelope and
the envelope modulated by cos(ϕ) and sin(ϕ).

the part Generalized Quadrature and Phase in section 2. Here q is defined by
the three filters in fig.5 where the radial part is a loglet, see eq.3. This order one
phase representation comprise a cos2(ϕ) angular window (left in fig.5) which is
modulated by cos(ϕ) and sin(ϕ), (middle and right). By using an orientation
selective window in three or more directions a phase invariant structure tensor
can be estimated (eq.7) as well as the certainty in orientation cθ, eq.8. The left
part in fig.6 shows a consistency estimation test image. The middle image shows
the traditional certainty based on the eigenvalues of T : cλ = (λ1 − λ2)/λ1. The
right image shows the phase consistency based certainty cθ. Note that certainty
estimates cλ and cθ clearly have different properties. Combining these estimates
provides provide a more robust certainty estimate.
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