
Rodgers, Peter and Vidal, Natalia (2000) A Demonstration of the Grrr Graph
Rewriting Programming Language. In: Proceedings of Agtive99: Applications
of Graph Transformations with Industrial Relevance. Lecture Notes In Computer
Science (LNCS) , 1779. pp. 473-480. Springer-Verlag

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21884/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21884/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Demonstration of the Grrr Graph Rewriting
Programming Language

Peter J. Rodgers and Natalia Vidal

Computing Laboratory, University of Kent, UK
{P.J.Rodgers, N.Vidal}@ukc.ac.uk

Abstract. This paper overviews the graph rewriting programming language,
Grrr. The serial graph rewriting strategy is detailed, and key elements of the
user interface are described. The system is illustrated by a simple example.

1 Introduction

The basic elements of the Grrr system are described in this paper. It allows graph data
structures to be visualised and has a computationally complete declarative program-
ming method. This paper concentrates on detailing the core rewriting strategy, other
literature [4,5,6] describes the more complex features that have been added for ease of
programming, changing the rewriting method or execution order. However, the core of
Grrr remains a serial, deterministic rewriting strategy with a top down matching
method.

Other graph rewriting systems use different variants on the graph rewriting method,
and visualise programs and graphs in alternative ways. Examples of such systems are
Good [3], Progres [7], MONSTR [1] and ∆-grammar programming [2].

In Grrr, graphs have labeled nodes and labeled directed edges. This allows simpler
graphs, without labels, or loop free to be specified if required. There are several dif-
ferent node types which allows the data graph to be differentiated from information
derived from the graph during execution.

The prototype is too slow and the interface is to clumsy for industrial usage, but the
current system allows experimentation and proof of concept. There are several sug-
gested application areas: database programming, graph drawing, associational rela-

tions and graph algorithm animation. These share a graph based, possibly visual view
of data, that need complex calculations.

The next section contains a worked example, based on a very simple program. The
final section details possible further work on the Grrr prototype.

2 Example

This section shows the execution method of Grrr by a simple example.

Fig. 1. A transformation window containing the transformation ’GetAge’. This transformation
calculates the age of people given their birth date. The transformation has been simplified for
clarity with the calculation dealing only with the year, and not with months or days, and the
current year, ’1999’, is hard coded into the program

Fig. 1 shows a transformation window containing the transformation ’GetAge’,
which has two rewrites. The first rewrite tests for a person who has yet had their age
calculated and calculates their age from the current year. The second rewrite, which is
only called after the first fails to match, terminates recursion by deleting the initiating
trigger node.

Every rewrite has a left hand side (LHS) and a right hand side (RHS). In a rewrite,
the differences between the positive part of the LHS graph and the RHS graph indicate
which nodes and edges are to be added and deleted in the host graph. The first rewrite
does not remove any primitives, but it adds an edge ’aged’ attached to a new trigger
node ’Minus’, the constant node ’1999’ attached to ’Minus’ an edge ’arg1, a copy of the
variable node ’D’ attached to ’Minus’ by ’arg2’. Here we use the convention that the

labels of variables are shown with capitalised first letters, and constants are shown
with lower case first letters. An exception are the rectangular trigger nodes, which are
always constant, no matter what their label.

The ’Age’ node and connecting ’aged’ edge in the first LHS are both negatives
(shown by thick lines), indicating that they must not be able to match for the LHS to
match. Hence, the LHS will only match a person ’X’ and a birth date ’D1’ if there has
been no age calculated yet for the person. The superscript to ’D’ is required because
there are two instances of ’D’ in the RHS, hence the programmer must specify which
was the original, and which is the new copy. The copy, ’D2’, is used in the calculation
to get the age.

The ’Minus’ trigger calls a built in transformation. It requires two argument nodes
attached by edges with labels ’arg1’ and ’arg2’, the label of the node attached to the
second argument is taken away from the label of the node attached to the first, and a
new node labeled with the result is created and is attached to the ’aged’ edge. The
trigger is deleted, as are the two argument nodes and edges.

Fig. 2. The first RHS graph of ’GetAge’ in a graph editing window. The numbers in the right
hand corner indicate the current coordinates of the cursor

The transformation window does not allow graphs to be edited. It only has facilities
to delete existing rewrites and create blank rewrites. To edit a LHS or RHS graph, a
graph editing window has to be brought up by double clicking on a graph in the trans-
formation window. A graph editing window with the first RHS of ’AddAge’ is shown
in Fig. 2. Numerous graph editing windows may appear on the screen at any time. The
functionality these windows provide includes adding new nodes and adding new edges
between existing nodes (edges are added after two nodes have been selected). Labels
and node types can be changed. Groups of nodes and edges can be selected, and so

deleted, cut, copied and pasted. When deleting or pasting, dangling edges are deleted.
The syntax of LHS or RHS graphs is maintained by ensuring that invalid nodes or
edges cannot be added to graphs. For instance, negatives cannot be added to RHS
graphs, and more than one trigger cannot be added to LHS graphs.

Fig. 3. The host graph window, with an example of using ’GetAge’

Fig. 4. The host graph after step 1

An example host graph window is shown in Fig. 3. This is the graph where rewrit-
ing occurs. It contains editing options much like the window of Fig. 2, in addition it
has options to initiate rewriting: ’Step’ and ’Run’. Step performs the next rewriting step
only, whereas Run rewrites the graph until there are no trigger nodes remaining. A
rewriting step consists of a single trigger node in the host graph initiating a single
rewrite of the transformation with the same name as the trigger label. The rewrite
changes only one subgraph in the host graph. The first host graph has only one trigger
node, ’GetAge’, so this is the one to be executed. The topmost LHS of the transforma-

tion is the first to be tested in the host graph. In this case a subgraph in the host will
match, and so the rewrite is used.

There are in fact two possible matches: the node ’X’ with ’fred’ or ’jim’, and the node
’D’ with the respective years. Where there is a choice of subgraph to match the deci-
sion is made by an iterative sort of both the LHS graph and the host graph, and
matching the highest valued subgraph. In this case ’jim’ is the one to match, as ’jim’ is
ordered higher than ’fred’ (’j’ is higher in the alphabet than ’f’). The host graph is then
changed as defined by the rewrite. The host graph after rewriting is shown in Fig. 4.

This first rewriting step adds nodes to the host graph, including the ’Minus’ trigger
node. The presence of this new trigger means there are now two triggers in the graph.
As ’Minus’ is newest, it is executed first. This newest first trigger initiation strategy
means that higher level triggers can remain in the host graph whilst transformations
that they call are executed. This allows programs to be structured in a hierarchical
manner.

Minus is built in and calculates the difference between 1999 and 1972, creating a
node with the result as its label, whilst deleting the nodes involved in the calculation.
There are many built in transformations, taking various arguments. Some are atomic,
in that they cannot be derived from other primitives in the system, others have been
added for efficiency reasons. The result of executing ’Minus’ can be seen in Fig. 5

Fig. 5. After step 2

The only trigger in the host graph is now the original ’GetAge’ trigger, it is executed
and so will again cause the first LHS to be tested in the host graph. ’jim’ will not now
match with ’X’, as ’27’ attached to ’aged’ matches with the negatives. This means ’fred’
is the only person that can match and so that part of the graph will be rewritten, as-
signing an age to the node. The host graph after both that execution step and the age
calculation step is shown in Fig. 6.

Fig. 6. After step 4

Both people in the host graph now have ages. The first LHS of ’GetAge’ will now
no longer match, because the negative edge and node will match the edges and nodes
attached to both ’jim’ and ’fred’, hence the second LHS will be tried. This will match,
as it looks only for a trigger node, and so the rewrite will occur. The rewrite simply
deletes the trigger node, terminating the program as there are no more trigger nodes in
the host graph, as shown in Fig. 7.

Fig. 7. The final host graph, after step 5

There are various ways of showing the execution in the host graph. The fastest
method is to execute the program by the Run button, and see the final result after exe-
cution has finished. However, to aid debugging, it is possible to highlight nodes that
have been matched, and see the continuous execution occurring as it happens in the
window.

3 Further Work

This paper has worked through a simple example of programming with graph rewrites.
Using similar techniques it is possible to create complex programs to alter visual rep-
resentations of graph data. However, there is much work that might be done to aug-
ment Grrr, improve its efficiency and adapt it to new application areas.

The user interface needs improvement. Unlike text editing, graph editing needs
specific, application based tools, particularly for systems such as Grrr, which rely on
editing restrictions for syntactic correctness. Graph editing in Grrr can be improved by
faster node and edge creation, improved cutting and pasting and changing the treat-
ment of dangling edges. Changes are also needed to the visualisation of rewriting, and
the addition of a good incremental graph drawing algorithm would improve the ap-
pearance of the host graph.

The programming language has no concept of libraries, encapsulation or other
software engineering tools. The concept and design of such features will require more
effort, but such additions should increase the portability, usefulness and attractiveness
of the language.

Improving the efficiency of execution is always a goal of language designers. The
current implementation could be much streamlined. Also, there are many possible
optimisations of graph matching and graph rewriting that could be explored. Other
optimisations that could be explored rely on knowledge about the application, and
restrictions on graphs.

Improving execution efficiency should allow the scale of the graphs that are re-
written to be increased. As graphs get bigger the problems of visualising the graph
also increases, and problems storing graphs have to be dealt with, as a graph database
is required.

Further exploration in applications is always possible, with graphs widespread in
computer science, particularly in areas such as networks, parallel computing and soft-
ware engineering. The modifications required to meet the needs of such areas are
possible interesting areas of research.

Acknowledgements

This work was partially supported by funding from the UK Engineering and Physical
Sciences Research Council (EPSRC), grant reference GR/M23564.

References

1. Banach R.: MONSTR I -- Fundemental Issues and the Design of MONSTR. Journal of
Universal Computer Science 2,4 (1996) 164-216.

2. Kaplan S.M., Goering S.K. & Cambell R.H.: Specifying Concurrent Systems with ∆
Grammars. Proceedings of the Fifth International Workshop on Software Specification and
Design. Society Press (1989). 20-27.

3. Paredaens J., Van den Bussche J., Andries M., Gyssens M. and Thyssens I.. An Overview
of GOOD. ACM SIGMOD Record, 21,1. (March 1992) 25-31

4. Rodgers, P.J.: A Graph Rewriting Programming Language for Graph Drawing. Proceed-
ings of the 14th IEEE Symposium on Visual Languages, Halifax, Nova Scotia, Canada.
IEEE Computer Society Press (1998) 32-39.

5. Rodgers P.J. and King P.J.H.: A Graph Rewriting Programming Language for Database
Programming. The Journal of Visual Languages and Computing 8(6), 1997. 641-674.

6. Rodgers P. J. and Vidal N.: Graph Algorithm Animation with GRRR. In Agtive99: Appli-
cations of Graph Transformations with Industrial Relevance, Kerkrade, The Netherlands,
September 1999. LNCS. Springer-Verlag.

7. Schürr A.: Rapid Programming with Graph Rewrite Rules. Proceedings USENIX Sympo-
sium on Very High Level Languages (VHLL), Santa Fe. October 1994. 83-100.

