University of

"1l Kent Academic Repository

Rodgers, Peter and Vidal, Natalia (2000) A Demonstration of the Grrr Graph
Rewriting Programming Language. In: Proceedings of Agtive99: Applications
of Graph Transformations with Industrial Relevance. Lecture Notes In Computer
Science (LNCS) , 1779. pp. 473-480. Springer-Verlag

Downloaded from
https://kar.kent.ac.uk/21884/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21884/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Demonstration of the Grrr Graph Rewriting
Programming Language

Peter J. Rodgers and Natalia Vidal

Computing Laboratory, University of Kent, UK
{P.J.Rodgers, N.Vidal}@ukc.ac.uk

Abstract. This paper overviews the graph rewriting prograngnianguage,
Grrr. The serial graph rewriting strategy is defdjland key elements of the
user interface are described. The system is ifitetrby a simple example.

1 Introduction

The basic elements of the Grrr system are desciibeds paper. It allows graph data
structures to be visualised and has a computaljonamplete declarative program-
ming method. This paper concentrates on detailiiegcore rewriting strategy, other
literature [4,5,6] describes the more complex festuhat have been added for ease of
programming, changing the rewriting method or eXeouwrder. However, the core of
Grrr remains a serial, deterministic rewriting &gy with a top down matching
method.

Other graph rewriting systems use different vasamt the graph rewriting method,
and visualise programs and graphs in alternativesswlaxamples of such systems are
Good [3], Progres [7], MONSTR [1] afdgrammar programming [2].

In Grrr, graphs have labeled nodes and labeledteiesdges. This allows simpler
graphs, without labels, or loop free to be spedifferequired. There are several dif-
ferent node types which allows the data graph talifferentiated from information
derived from the graph during execution.

The prototype is too slow and the interface isltonsy for industrial usage, but the
current system allows experimentation and prootmicept. There are several sug-
gested application areas: database programmingh gieawing, associational rela-

tions and graph algorithm animation. These shageph based, possibly visual view
of data, that need complex calculations.

The next section contains a worked example, basea\ery simple program. The
final section details possible further work on @Ger prototype.
2 Example
This section shows the execution method of Grra kjmple example.

TRANSFORMATION - Gethge _ (O] x|
File ‘ Edit ‘ View F

II%EEHH!HII
0 baorn
—

gaed

Qage)

—

Fig. 1. A transformation window containing the transforroatiGetAge’ This transformation
calculates the age of people given their birth .date transformation has been simplified for
clarity with the calculation dealing only with tlyear, and not with months or days, and the
current year, '1999;, is hard coded into the pragra

Fig. 1 shows a transformation window containing thensformation GetAge,
which has two rewrites. The first rewrite tests #operson who has yet had their age
calculated and calculates their age from the cugrear. The second rewrite, which is
only called after the first fails to match, termties recursion by deleting the initiating
trigger node.

Every rewrite has a left hand side (LHS) and atrigind side (RHS). In a rewrite,
the differences between the positive part of th&lddaph and the RHS graph indicate
which nodes and edges are to be added and detetied host graph. The first rewrite
does not remove any primitives, but it adds an ealged’ attached to a new trigger
node Minus’, the constant node 1999’ attachedious’ an edge ‘argl, a copy of the
variable node D’ attached to Minus’ by arg2’. Hewe use the convention that the

labels of variables are shown with capitalisedt fietters, and constants are shown
with lower case first letters. An exception are teetangular trigger nodes, which are
always constant, no matter what their label.

The 'Age’ node and connecting aged’ edge in thstfLHS are both negatives
(shown by thick lines), indicating that they must be able to match for the LHS to
match. Hence, the LHS will only match a personakt a birth date Dif there has
been no age calculated yet for the person. Therstygt to D’ is required because
there are two instances of D’in the RHS, henae glogrammer must specify which
was the original, and which is the new copy. Theyec®?, is used in the calculation
to get the age.

The Minus’ trigger calls a built in transformatiolt requires two argument nodes
attached by edges with labels argl’ and arg2 thbel of the node attached to the
second argument is taken away from the label ohtige attached to the first, and a
new node labeled with the result is created andtteched to the ‘aged’ edge. The
trigger is deleted, as are the two argument nodé®édges.

RHS1 _ (O] x|
File | Edit | Yiew 1451

Fetige

X bom
aged .Dj

Minus

argz
I|ar;;|1

Fig. 2. The first RHS graph of GetAge'in a graph editwidow. The numbers in the right
hand corner indicate the current coordinates otthsor

The transformation window does not allow graphbecedited. It only has facilities
to delete existing rewrites and create blank resriiTo edit a LHS or RHS graph, a
graph editing window has to be brought up by dowahitking on a graph in the trans-
formation window. A graph editing window with thiest RHS of 'AddAge’is shown
in Fig. 2. Numerous graph editing windows may apmeathe screen at any time. The
functionality these windows provide includes addiegv nodes and adding new edges
between existing nodes (edges are added after tesrhave been selected). Labels
and node types can be changed. Groups of nodesdgad can be selected, and so

deleted, cut, copied and pasted. When deletingsting, dangling edges are deleted.
The syntax of LHS or RHS graphs is maintained bsueng that invalid nodes or
edges cannot be added to graphs. For instancetivesgaannot be added to RHS
graphs, and more than one trigger cannot be addeld$ graphs.

Host Graph M=l E3
Filz | E dit | "Wigw ' STEP ‘ RUM Clatapet !

born barn

Fig. 3. The host graph window, with an example of usinetAye’

Host Graph M=l E3
Filz | E dit | "Wigw ' STEP ‘ RUM 268 A

"ﬂﬂl. barn

barn Eqed

Minus

frgl ™arg2

1999 @

Fig. 4. The host graph after step 1

An example host graph window is shown in Fig. 3isTib the graph where rewrit-
ing occurs. It contains editing options much like window of Fig. 2, in addition it
has options to initiate rewriting: 'Step’ and RuStep performs the next rewriting step
only, whereas Run rewrites the graph until theee rag trigger nodes remaining. A
rewriting step consists of a single trigger nodethia host graph initiating a single
rewrite of the transformation with the same namehastrigger label. The rewrite
changes only one subgraph in the host graph. Téiehibst graph has only one trigger
node, GetAge), so this is the one to be executdn topmost LHS of the transforma-

tion is the first to be tested in the host graphthis case a subgraph in the host will
match, and so the rewrite is used.

There are in fact two possible matches: the nodsitk fred’ or jim’, and the node
D’ with the respective years. Where there is aiohaf subgraph to match the deci-
sion is made by an iterative sort of both the LH8ph and the host graph, and
matching the highest valued subgraph. In this fiases the one to match, as jim’is
ordered higher than fred’ (j is higher in thepalabet than). The host graph is then
changed as defined by the rewrite. The host gréiph writing is shown in Fig. 4.

This first rewriting step adds nodes to the hoapfr including the Minus’ trigger
node. The presence of this new trigger means drer@ow two triggers in the graph.
As Minus’ is newest, it is executed first. Thiswest first trigger initiation strategy
means that higher level triggers can remain inhibgt graph whilst transformations
that they call are executed. This allows program$e structured in a hierarchical
manner.

Minus is built in and calculates the differencevssn 1999 and 1972, creating a
node with the result as its label, whilst deletihg nodes involved in the calculation.
There are many built in transformations, takingioias arguments. Some are atomic,
in that they cannot be derived from other primiive the system, others have been
added for efficiency reasons. The result of exaguilinus’can be seen in Fig. 5

Host Graph H=]

File | Edit | Wiew ' STER ‘ RUM 2476

born barn
@ gged

Fig. 5. After step 2

The only trigger in the host graph is now the oréiGetAge’trigger, it is executed
and so will again cause the first LHS to be tegteithe host graph. jim’ will not now
match with X', as 27’ attached to ‘aged’ matcheih the negatives. This means fred’
is the only person that can match and so thatgfattte graph will be rewritten, as-
signing an age to the node. The host graph aftédr that execution step and the age
calculation step is shown in Fig. 6.

Host Graph _ | O]

File | E dit | Wiew ' STEF ‘ RUM 23213

born barn
= R

Fig. 6. After step 4

Both people in the host graph now have ages. TeelfHS of GetAge’ will now
no longer match, because the negative edge andwitidaatch the edges and nodes
attached to both jim’and fred, hence the secaitiS will be tried. This will match,
as it looks only for a trigger node, and so theri@awill occur. The rewrite simply
deletes the trigger node, terminating the prograrthare are no more trigger nodes in
the host graph, as shown in Fig. 7.

Hoszt Graph Mi=] E3

File | Edit | View ' STEP ‘ RUN [17s1

@ barn @ barn
aged @ aged

Fig. 7. The final host graph, after step 5

There are various ways of showing the executiothe host graph. The fastest
method is to execute the program by the Run buéod,see the final result after exe-
cution has finished. However, to aid debuggings ipossible to highlight nodes that
have been matched, and see the continuous exe@dtumring as it happens in the
window.

3 Further Work

This paper has worked through a simple exampleagramming with graph rewrites.
Using similar techniques it is possible to creaimplex programs to alter visual rep-
resentations of graph data. However, there is mumtk that might be done to aug-
ment Grrr, improve its efficiency and adapt it }napplication areas.

The user interface needs improvement. Unlike tedting, graph editing needs
specific, application based tools, particularly $ystems such as Grrr, which rely on
editing restrictions for syntactic correctness. fiBraditing in Grrr can be improved by
faster node and edge creation, improved cutting gasiing and changing the treat-
ment of dangling edges. Changes are also needbd tasualisation of rewriting, and
the addition of a good incremental graph drawirgpathm would improve the ap-
pearance of the host graph.

The programming language has no concept of libsarcapsulation or other
software engineering tools. The concept and dedigiuch features will require more
effort, but such additions should increase thegimlity, usefulness and attractiveness
of the language.

Improving the efficiency of execution is always @afjof language designers. The
current implementation could be much streamlinetboAthere are many possible
optimisations of graph matching and graph rewritihgt could be explored. Other
optimisations that could be explored rely on knalgke about the application, and
restrictions on graphs.

Improving execution efficiency should allow the lgcaf the graphs that are re-
written to be increased. As graphs get bigger tlblpms of visualising the graph
also increases, and problems storing graphs halve tealt with, as a graph database
is required.

Further exploration in applications is always plokesi with graphs widespread in
computer science, particularly in areas such asarks, parallel computing and soft-
ware engineering. The modifications required to trtbe needs of such areas are
possible interesting areas of research.

Acknowledgements

This work was partially supported by funding frone tUK Engineering and Physical
Sciences Research Council (EPSRC), grant refeil@RiM23564.

References

1. Banach R.: MONSTR | -- Fundemental Issues and thsigh of MONSTR. Journal of
Universal Computer Science 2,4 (1996) 164-216.

2. Kaplan S.M., Goering S.K. & Cambell R.H.: SpecifyitConcurrent Systems with
Grammars. Proceedings of the Fifth Internationalk&leop on Software Specification and
Design. Society Press (1989). 20-27.

3. Paredaens J., Van den Bussche J., Andries M., Gy$8eand Thyssens I.. An Overview
of GOOD. ACM SIGMOD Record, 21,1. (March 1992) 2b-3

4. Rodgers, P.J.: A Graph Rewriting Programming Laggufor Graph Drawing. Proceed-
ings of the 14 IEEE Symposium on Visual Languages, Halifax, N&aotia, Canada.
IEEE Computer Society Press (1998) 32-39.

5. Rodgers P.J. and King P.J.H.: A Graph RewritinggRamming Language for Database
Programming. The Journal of Visual Languages anuiting 8(6), 1997. 641-674.

6. Rodgers P. J. and Vidal N.: Graph Algorithm Aniratiwith GRRR. In Agtive99: Appli-
cations of Graph Transformations with IndustrialéRance, Kerkrade, The Netherlands,
September 1999. LNCS. Springer-Verlag.

7. Schirr A.: Rapid Programming with Graph Rewrite dgulProceedings USENIX Sympo-
sium on Very High Level Languages (VHLL), Santa Betober 1994. 83-100.

