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Abstract. This paper examines the effects of local search on hybrid genetic
algorithm performance and population sizing. It compares the performance of a
self-adaptive hybrid genetic algorithm (SAHGA) to a non-adaptive hybrid
genetic algorithm (NAHGA) and the simple genetic algorithm (SGA) on eight
different test functions, including unimodal, multimodal and constrained
optimization problems. The results show that the hybrid genetic algorithm
substantially reduces required population sizes because of the reduction in
population variance. The adaptive nature of the SAHGA algorithm together
with the reduction in population size allow for faster solution of the test
problems without sacrificing solution quality.

1 Introduction

Hybrid genetic algorithms (HGAs) are a natural extension to genetic algorithms (GA),
combining the genetic algorithm’s global search capabilities with the strengths of
local search algorithms. These algorithms have been used in a number of different
fields, including transportation engineering [8], water resources modeling [4],
operations research [12], and groundwater management [11] to name a few. For
example in the so-called “Bicriteria Transportation Problem” presented in [8], the GA
was combined with the traditional simplex method to solve linear problems to create
the HGA. Another example is the groundwater management problem. The HGA
presented in [11] was created by combining the GA with constrained differential
dynamic programming. In these applications and others, the HGA and the GA solved
the problem using the same population size, and the local search step is applied in
most of the cases to a small number of individuals in the population generation after
generation. In this study, we analyze the effect of the local search component of the
HGA on the search and on reduction of the search space. This reduction reduces the
population size necessary to solve the HGA problem relative to the SGA for the same
solution reliability, thereby decreasing the computational burden.

Section 2 gives an overview of the HGA algorithms analyzed in this work and
Section 3 presents the test functions that were used to evaluate performance of the
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HGA algorithms in Section 4. Finally, Section 5 presents our conclusions and
recommendations.

2 SAHGA and NAHGA Algorithms

The two hybrid genetic algorithms (HGA) used in this work are NAGHA (non
adaptive hybrid genetic algorithm) and SAGHA (self adaptive hydrid genetic
algorithm) were originally proposed by [7]. A brief description of the algorithms is
presented next. The full details of these algorithms can be found in [7].

2.1 Non-adaptive Hybrid Genetic Algorithm (NAHGA)

The NAHGA algorithm combines a simple genetic algorithm (SGA) with local
search. The local search step is defined by three basic parameters: local search
frequency, probability of local search, and number of local search iterations. Local
search frequency determines how frequently local search is invoked (e.g., every 3
iterations); probability of local search represents the fraction of individuals in the
population that undergo local search at each invocation; and number of local search
iterations represents the number of local search steps performed at each invocation.

2.2 Self-Adaptive Hybrid Genetic Algorithm (SAHGA)

The SAHGA algorithm works with the same operators as the NAHGA algorithm:
local search frequency, probability of local search and number of local search
iterations. The major difference in the approaches is that the SAHGA adapts in
response to recent performance of the algorithm as it converges to the solution. In
other words, the operators are used only when they can provide new information to
the search. The adaptation process for the three parameters is different. The global-
local switch is adapted by evaluating the ratio of the coefficient of variation of the
fitness between two consecutives generations. Local search is performed when this
ratio is greater than a specified local search threshold. This approach ensures that
local search is only performed when the coefficient of variation is significantly
increasing, which indicates that a new area of decision space is being searched and
local search is needed. The second adaptive parameter is the probability of local
search, which is decreased from the initial value at the beginning of every local search
step. Finally, the number of local search steps is controlled by comparing the
improvement attained in the local search step with the improvement attained by
global search. When local search no longer improves average fitness more than the
most recent global search iteration, the search reverts to global search.
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3 Test Functions

In order to evaluate the performance of the algorithm, the following 8 test functions
were selected from the GA literature:

Unimodal problems: De Jong’s 1 and De Jong’s 2 [5]

Multimodal problems with the same local mimimum at different locations:
Branin [3] and Six Hump [6]

2 multimodal problems with different optima: Schwefel [17] and Griewank [1]

2 constrained unimodal problems: Test04 [13] and Bracken & McCormick [2]

4 Evaluation of HGA Performance

This section is divided in 5 sub-sections: local search algorithms, population size
evaluation for the SGA, standard deviation reduction, population size for the HGA,
and analysis of results.

4.1 Local Search Algorithm

The local search operator attempts to find the best solution starting at a previoulsy
selected point, in this case a solution in the SGA population. For this analysis, 5 local
search algortithms were selected. These algorithms are:

Random Walk with Uniform Distribution (LS1): In general, the random walk is
simply the movement from one point of the decision space to a new point
randomly selected using a uniform distribution from a neighborhood around the
starting point [18]. One iteration of this algorithm requires one fitness function
evaluation.

Random Walk with Normal Distribution (LS2): This algorithm is similar to the
uniform distribution discussed previously, but the change of location is evaluated
with a normal distribution instead of a uniform distribution. For this reason, the
points located near the starting point are more likely to be selected than those
located closer to the boundary of the search area. Again, one iteration requires one
function evaluation.

(1+1)-Evolutionary Strategy (LS3): This algorithm, proposed by [14] and [16],
randomly selects a new location using a normal distribution with variable standard
deviation. The standard deviation changes following the so-called % success rule

based on the evaluation of success of the search. This algorithm also requires one
fitness function evaluation per local search iteration.

Random Derivative (LS4): This algorithm randomly selects a search direction, and
using this direction, the location of a new point is evaluated. This algorithm needs
2 fitness function evaluation for every local search iteration (one for the evaluation
of the coordinates of the new point and one for its fitness).

Steepest Descent (LS5): The algorithm evaluates the new point following the
direction of the gradient of the function at the starting point. This algorithm
performs one function evaluation for every one of the decision variables of the
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particular test problem (to numerically evaluate gradient) and one function
evaluation to evaluate the fitness of the new individual.

4.2 Population Size for Genetic Algorithm

One of the critical elements for optimal performance of a GA is the population size.
For the population size evaluation, a relationship derived from the random walk
model proposed by [9] is used. In their approach the population size is given by:

N>-2%" n(a )[%f] (1)

In Eq. (1), K represents the building block (BB) order, o is the reliability (i.e., the
probability that the GA finds the optimal solution); o, is the standard deviation of the
fitness function, and d is the signal difference between the best and second best
solution. The parameters ¢, and d are estimated using a large, random initial
population. For these test problems, d was estimated from the differences in fitness of
the best members of the population. In this case the analysis was performed by means
of a probabilistic approach based on frequency analysis theory [10], in which the
histogram of the fitness function is evaluated. This histogram represents different
“classes* of fitness that can be statistically identified. Using the histogram, “d* is
evaluated as the size of the first class of the histogram. The building block order, K, is
unknown but can be assumed to vary between 1 and 5 [15].

Using this information, a range of initial population sizes for the SGA was
estimated from Eq. (1) for all 8 test problems for differrent values of parameter K, as
shown in Table 1.

The final step in the analysis is the selection of the starting population from the
values given in Table 1. For this analysis, the convergence time must be less than the
drift time. The convergence time is evaluated with the relation t = 2/ (where [ is the
chromosome length) [19]. The drift time is given by t,, = 1.4 N (where N is the
population size) [20]. Imposing the condition that convergence time must be less than
drift time to obtain the correct solution, the population size must satisfy the relation
presented in Eq. (2) (lower boundary for population size):

N>1421 2)

Table 1. Population size (SGA) for different values of K

Building Block Test Function
Order (K) DJ1 | DJ2 |Branin |Six-Hump| Schwefel | Griewank | Test04 | B&M
1 20 12 20 10 35 20 16 24
2 40 24 40 20 70 40 32 48
3 80 48 80 40 140 80 64 96
4 160 96 160 80 280 160 128 192
5 320 192 320 160 560 320 256 384

Table 2 shows the chromosome length for each test function and the corresponding
lower boundary for the population evaluated with Eq. (2). The table also includes the
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minimum building block order that satisfies Eq. (2) (see Table 1) and the adopted
population for the SGA runs.

Table 2. Adopted SGA Population for all 8 problems

Function Chromosome Lower Minimum Building | Adopted
Length Boundary Block Order (K) | Population

DJ1 150 213 5 320
DJ2 60 83 4 96

Branin 60 83 4 160

Six-Hump 60 83 5 160

Schwefel 150 213 4 280

Griewank 60 86 4 160
Test04 60 83 4 128
B&M 60 86 3 96

4.3 Standard Deviation Reduction: Local Search Effect on Population Size

For the HGA case, Eq. (1) is modified to include the effect of local search. During
local search, the diversity of the initial population is decreased because multiple
members of the population usually have the same nearby local optima. The following
example contains the results of local search on the multimodal function Griewank for
a population of 20 individuals. Fig. 1 shows the fitness for a random population
before and after local search (uniform random and gradient). The line represents the
average population fitness. From Fig. 1, it is clear that the standard deviation of the
fitness for the population after local search is substantially reduced. Initially the
average is 30 and the standard deviation is 27.1. After 3 iterations (60 function
evaluations) uniform random search reduces the standard deviation to 24.6 and the
average to 25.2 (see open squares and dashed line). Steepest descent local search
performed 1 iteration (60 function evaluations) and changed the standard deviation to
7.3 and reduced the average to 12.1 (see open circles and solid line). Steepest descent
local search lowered the standard deviation and the average by an amount larger than
uniform random local search while using the same 60 function evaluations. Both
methods of local search performed the same number of function evaluations, however
the gradient method only did 1 iteration while the uniform random method did 3
iterations in order to evaluate the results for the same amount of effort. These results
show that gradient search decreases diversity faster than random search.

The local search reduction effect can be modeled as 6y = f 6, where 0 <P < 1 is
the standard deviation reduction by local search. Eq. (1) can be rewritten as:

N>-2%" n(a )[ %] 3)

Eq. (3) shows that the population for the HGA algorithms should be directly
proportional to the SGA population.

The parameter B can be estimated by applying local search to the initial random
population for a predefined number of iterations. For the current application, local
search was applied to a population of 1,000 individuals for a total of 10 iterations.
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Fig. 2 shows the change of standard deviation with respect to the standard deviation
of the initial population for the selected test problem (Griewank). Since most of the
local search steps involved fewer than 6 iterations, the value used for posterior

evaluations was the average value of [ across the first 5 iterations.
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Fig. 1. Local search effect on fitness: a) before local search, b) after local search

In Fig. 2, gradient (LS5) has the largest effect on standard deviation;1 iteration of
this algorithm is equivalent to 3 iterations of LS1, LS2 or LS3. The random derivative
(LS4) method is the second most effective local search method at decreasing the
standard deviation of the population. The first three local search methods also have
substantial effects on the standard deviation, especially if the amount of effort
involved is taken into consideration.
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Fig. 2. Standard Deviation Reduction, B, for Griewank Function
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4.4 Population Size for Hybrid Algorithms

Using Eq. (3) and the value of B estimated for every one of the 5 algorithms, Table 3
displays the HGA population results for every test problem and local search
algorithm. From the results, it is clear that the effect of the different local search
algorithms is the same for DJ1 and Six-Hump. On the other hand, for Griewank the
population size is different for every one of the 5 local search algorithms in
consideration because of the different reductions in standard deviation.

Table 3. HGA Population

Local Search Algorithm

Test Function LS1 | LS2 | LS3 | LS4 | LS5

DJ1 288 288 | 288 | 288 288
DJ2 64 64 64 40 40
Branin 96 96 80 48 48
Six-Hump 96 96 96 96 96

Schwefel 240 224 216 160 160
Griewank 144 136 128 112 64
Test04 120 112 112 112 80
B&M 92 88 88 48 48

4.5 HGA Performance

The HGA performance results consist of 2 types of data: results evaluated for one
population for a default set of parameters defined in [7], and results evaluated using
Monte Carlo simulation for different combinations of parameters also defined in [7].

The first set of results for Griewank can be presented in two graphs. The first graph
(Fig. 3) plots the best fitness in the population during the SGA and SAHGA search
processes, with SAHGA using the 5 local search techniques. The results are presented
in terms of number of function evaluations because the adaptive local search uses
different numbers of function evaluations in each generation. The results presented
also only include the results attained by the application of SAHGA because SAHGA
performance is consistently better for the 8 test problems.

Fig. 3 shows that the SGA is inferior to SAHGA with all five local search
algorithms. SGA required the most function evaluations with a total of 8,800. Steepest
descent (LS5) performed only 4,896 function evaluations with a population of 64, a
reduction of 44%. The steepest descent method’s speed and its ability to reduce the
required population offset the fact that it is the most expensive method. In fact, its
performance is better than the performance of normal random search (LS2) and
(1+1)-ES (LS3).

The second result, shown in Fig. 4, is the convergence ratio, which is defined as
the number of individuals with fitness equal to or near the fitness of the best
individual. Fig. 4 shows that the results attained by SAHGA are again better than the
SGA for all 5 local search approaches. The results from the other 7 test functions are
not shown because they present the same trend, with SAHGA performing better than
the SGA by 5% to 33%.
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Fig. 4. Convergence Ratio for Griewank

The solution quality of the algorithms was also evaluated by performing 100
Monte Carlo simulations over the initial population for every one of the parameter
combinations described in [7]. Table 4 shows the results of these simulations. The
results are presented for the best, default and worst parameter combinations. For
SAHGA, the average number of function evaluations for the default and best set of
parameters are always better than the results attained with the SGA, and the
difference between the best set of results and the default varies between 2% and 8%.
On the other hand, for NAHGA sometimes the results associated with the default set
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of parameters are worse than the results attained with the SGA, and the difference
between the best set of results and the default set of results varies between 10% and
25% for different local search algorithms. This shows that parameter estimation is
critical to attaining good performance for the NAHGA, but the adaptive capabilities
of SAHGA reduce the need for careful parameter selection. For both algorithms, the
worst set of results was attained when all the individuals are undergoing local search.

Table 4. Monte Carlo Simulation Results
Average Number of Function Evaluations

A SAHGA NAHGA
Local Search SG Worst | Default | Best | Worst| Default | Best
LS1 4,326 | 6,851 | 4,020 | 3,906 | 9,462 | 4,373 | 3,936
LS2 4,326 | 6,470 | 3,800 | 3,720 | 8,936 | 4,131 | 3,717
LS3 4,326 | 6,402 | 3,775 | 3,660 | 8,723 | 4,036 | 3,478
LS4 4,326 (13,776 | 3,964 | 3,666 |14,337| 4,645 | 3,508
LS5 4,326 | 7,905 | 3,503 | 3,292 | 8,961 | 4,153 | 3,071

For the other test problems in this study, the results are similar. The only difference
is that the best local search algorithm sometimes varies among gradient, (1+1)-ES,
uniform random walk, normal random walk, and random derivative. This
phenomenon is related to the differences in standard deviation reduction of each
algorithm for different test functions. For example, when the differences in standard
deviation reduction between steepest descent and random search is not significant (see
Table 3 for functions DJ1 and Six-Hump), random search is more likely to perform
better than steepest descent given the big difference in the effort necessary to apply
the algorithms. On the other hand, when the difference is significant (see Griewank
function in Table 3), steepest descent is better than random walk.

Fig. 5 shows the reliability of SGA, SAHGA and NAHGA for the default set of
parameters. SAGHA reliability was in the range of 98-100%, while solving the
problem over a much smaller population than the SGA, which means it is less
expensive. NAGHA is very efficient as well, with reliability values of 96% to 100%,
again with smaller population sizes than the SGA. SAHGA and NAHGA have
somewhat lower reliabilities for LS4 and LS5 because the extensive standard
deviation reduction associated with the gradient-based algorithms sometimes causes
premature convergence due to loss of diversity in the population.

5 Recommendations and Conclusions

The results presented in this paper indicate that the local search capabilities of the
HGA algorithm enabled robust solution of complex, unimodal, multi-modal, and
constrained problems with less effort than the SGA. Of the two hybrid algorithms,
SAHGA is always superior to NAHGA because near-optimal performance is attained
for a broad range of parameters. Another result is related to the importance of the
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Fig. 5. SGA and HGA Reliabilities for Default Set of Parameters

local search algorithm selected. The results show that the best performance is not
always attained for the same local search algorithm across all test functions, mostly
because of the difference in effort necessary to apply the different local search
algorithms. For any function, the most suitable local search algorithm can be pre-
selected using only the population sizing analysis shown in Table 3. When the
difference between populations (for different local search algorithms) is not
significant, it is more likely that a random search algorithm (which requires only 1
function evaluation per local search iteration) will perform better than steepest
descent (which requires n+1 function evaluations per iteration, with n the number of
decision variables).

Another important result derived from this research is related to the setting of
population sizing in Section 4. This process allows us to evaluate a good estimate of
the population to achieve optimal performance, but there is a possibility that the same
level of reliability is achieved with a smaller population. With respect to the HGA, the
analysis presented shows clearly how local search reduces the standard deviation of
fitness in the population, which in turn reduces the required population size to achieve
the same level of reliability. This reduced population together with the HGA reduces
the total number of function evaluations by 44% on average. In this way, the HGA is
almost twice as fast as the original GA.

The next step of this research will be to analyze possible ways to improve the
performance of the algorithm with a more detailed study of the processes involved.
Finally, the algorithm will be applied to solve real world problems.
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