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Abstract. The Linear Ordering Problem(LOP), which is a well-known
NP-hard problem, has numerous applications in various fields. Using
this problem as an example, we illustrate a general procedure of
designing a hybrid genetic algorithm, which includes the selection of
crossover/mutation operators, accelerating the local search module
and tuning the parameters. Experimental results show that our hybrid
genetic algorithm outperforms all other existing exact and heuristic
algorithms for this problem.
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1 Introduction

The Linear Ordering Problem(LOP) has numerous applications in economics,
archaeology, scheduling, the social sciences, and aggregation of individual
preferences[5,6,7,8]. Of all these applications, the most famous one may be “the
Triangulation for Input-Output Matrices”[7], which measures the movement of
goods from one “sector” to another in economics research.

Mathematically, LOP can be formulated as :

Instance : a matrix C = {cij}n×n

Solution : p = (p1, p2, ..., pn), a permutation of 1...n

Objective : to maximize C(p) =
n∑

i=1

n∑

j=i+1

cpi,pj

This problem is known to be NP-hard[9]. Many exact and heuristic algo-
rithms have been proposed to solve it.

Several exact methods have been devised based on the integer programming
technique. Grotschel et al. first proposed a cutting plane algorithm in [6,7];
Mitchell and Borchers[8] improved the result by combining the cutting plane
with the interior point algorithm. However, all of these exact algorithms are
extremely time-consuming.
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On the other hand, heuristic algorithms seem to be more practical in solving
large instances of this problem[1,2,3,4,5]. The heuristic proposed by Chanas and
Kobylanski[5] can usually provide acceptable solutions both in terms of time
and quality. Laguna et al.[1] applied Tabu Search technique with path relinking
strategy on this problem successfully, while Campos et al.[2] used Scatter Search
to solve this problem. These two approaches are often regarded as the best at
this moment.

The purpose of this paper includes: (1) to develop an effective heuristic for
LOP and (2) to illustrate a general procedure of designing a hybrid genetic algo-
rithm. Genetic algorithms(GA) have shown to be competitive technique for solv-
ing general combinatorial optimization problems. However, it is possible to in-
corporate problem-specific knowledge into GA so that the results can be further
improved. The hybridization between GA and Local Search is such a method.
Experimental results show that our hybrid genetic algorithm outperforms all
other existing exact and heuristic algorithms for LOP.

The rest of this paper is organized as follows. We first present the details
of our hybrid GA implementation in Section 2. In Section 3, preliminary ex-
periments are conducted to tune our algorithm. The final computational results
and comparisons are reported in Section 4. In the last section, we present our
conclusions.

2 Hybrid Genetic Algorithm

Many variations of hybridization between Genetic Algorithms and Local Search
have been proposed[11,13,14]. In this paper, our hybrid GA has the following
structure:

Algorithm 1 Hybrid Genetic Algorithm
1: Initialize population size, crossover rate, mutation rate
2: Generate Initial Generation gen
3: while not TerminateConditions() do
4: for pop← 1 to population size do
5: Randomly selected two individuals from gen according to the fitness, say, genx and geny

6: if random[0, 1) < crossover rate then
7: next genpop ←CrossoverOperator(genx, geny)
8: else
9: next genpop ←Copy(better(genx, geny))

10: end if
11: if random[0, 1) < mutation rate then
12: next genpop ←MutationOperator(next genpop)
13: end if
14: next genpop ←LocalSearch(next genpop)
15: if fitness(next genpop) > history best then
16: history best←fitness(next genpop)
17: solution← next genpop

18: end if
19: end for
20: gen← next gen
21: end while
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In this structure, we include all the basic components of a typical genetic
algorithm, such as Initial Generation, Terminate Conditions, CrossoverOperator,
MutationOperator, Fitness Function etc. In addition, we have also incorporated
a local search module to improve the quality of each individual in the population.
More details are provided in the following subsections.

2.1 Genetic Algorithm

– Individual Representation and Fitness Function : In LOP, any per-
mutation p = (p1p2...pn) is a feasible solution. It is very natural to use a
n length vector p as the representation (chromosome) of an individual. The
objective function C(p) acts as the fitness function of chromosome.

– Initial Generation : For the initial generation, each individual is set us-
ing a permutation that is randomly generated, after which a local search is
applied to it to improve its quality. Therefore, every individual in the initial
generation is already a local maximum in the solution space.

– Terminate Conditions : We do not have duplicate detection scheme in our
genetic algorithm. The evolution process is to converge to a “best” solution.
When this happens, the algorithm terminates. However, checking for conver-
gence can be time consuming. An alternative is to use the fitness function
to approximate convergence.

– Crossover Operators : Three crossover operators, including PMX, CX
and OX, are implemented in our algorithm and tested by our experiments.

• Partially Mapped Crossover(PMX) operator was proposed by Goldberg
and Lingle[10]. The basic idea of PMX is to exchange a partial segment
between two parents. However, a skill named mapping is used in order
to keep the results still as feasible permutations.

• Cycle Crossover(CX) operator was first used in [12]. It first finds all
the mapping cycles between two parents. After that, for each cycle, it
randomly selects one of the two parents, and copies its elements to the
offspring in corresponding position.

• Order Crossover(OX) operator[13] first randomly selects several same
elements in both parents, and then exchanges are made between two
parents in those positions in order.

– Mutation Operators : We experiment with the two most commonly used
mutation operators, DM and k-EM.

• Displacement Mutation(DM) operator[14] randomly select a segment
from the chromosome sequence and insert it into another randomly se-
lected position.

• k-EM is a variation of Exchange Mutation(EM) operator, where k ex-
change(swap) operations are performed synchronously in 2 × k random
selected positions.

2.2 Local Search

The local search strategy we used in LOP is based on the idea of iterative im-
provement. It starts with an initial solution(permutation p), and tries to improve
the solution via a series of neighbour moves until no improvement can be made.
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Neighbouring Move : In each iteration, the solution p is improved by
a “neighbouring move”. We use the INSERT move (also named DELETE-
INSERT or SHIFT) and the EXCHANGE move (also named SWAP or Pairwise-
Interchange) that are commonly used in permutation problems. For more details
please see Table 1.

Table 1. Two commonly used neighbouring moves

neighbouring move explanation examples: p = (5, 3, 1, 2, 4)
INSERT(p, i, j) insert pi to position j INSERT(p, 4, 1) = (2, 5, 3, 1, 4)

EXCHANGE(p, i, j) exchange pi and pj EXCHANGE(p, 4, 1) = (2, 3, 1, 5, 4)

The following is an interesting observation.

Theorem 1. For the LOP, INSERT move subsumes EXCHANGE move.

Proof. – If a solution p can be improved by the INSERT move, it may
not be improved by the EXCHANGE move.
An easy counterexample can be constructed when n = 3:
consider p = (1, 3, 2), c2,1 − c1,2 = 10, c3,1 − c1,3 = −1, c2,3 − c3,2 = −100,
An INSERT move can be made to improve the result since
INSERT(p, 1, 3)−p = C(3, 2, 1)−C(1, 3, 2) = (c3,1−c1,3)+(c2,1−c1,2) = −1+10 =
9 > 0.
Consider the EXCHANGE move,
EXCHANGE(p, 1, 2) − p = C(3, 1, 2) − C(1, 3, 2) = −1 < 0,
EXCHANGE(p, 1, 3) − p = C(2, 3, 1) − C(1, 3, 2) = −100 + 10 − 1 < 0,
EXCHANGE(p, 2, 3) − p = C(1, 2, 3) − C(1, 3, 2) = −100 < 0.
Hence, no EXCHANGE move can be made to improve the solution p.

– If a solution p can be improved by the EXCHANGE move, it can
always be improved by the INSERT moves.
Suppose p can be improved by EXCHANGE(p, i, j)(i < j):

Let p′′ = INSERT(p, i, j − 1)

p′′′ = INSERT(p, j, i)

Obviously, p′ = EXCHANGE(p, i, j) = INSERT(p′′, j, i) = INSERT(p′′′, i + 1, j)

So, C(p′) − C(p) = (C(p′) − C(p′′)) + (C(p′′) − C(p))

= (C(p′) − C(p′′′)) + (C(p′′′) − C(p))

A important property of LOP is that

C(p′) − C(p′′′) = C(p′′) − C(p) =
j−1∑

k=i+1

(cpk,pi − cpi,pk )

Therefore, C(p′) − C(p) = (C(p′′) − C(p)) + (C(p′′′) − C(p)).
Since solution p′ is better than p, C(p′)−C(p) > 0, we have C(p′′)−C(p) > 0
or C(p′′′) − C(p) > 0, that is, p can also be improved by INSERT. ��
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As a result, only INSERT moves are considered in our algorithm. The gain in
objective function after one INSERT move is given as:

dCi,j = C(INSERT(p, i, j)) − C(p) =






∑j

k=i+1(cpk,pi − cpi,pk ) for i < j

0 for i = j∑i−1
k=j

(cpi,pk − cpk,pi) for j < i

(1)

Search Strategy : In each iteration, there are n(n − 1) choices for an INSERT
move. The FirstFit and BestFit are two widely adopted strategies.

As shown in Algorithm 2, the FirstFit search strategy always uses the first
found move which can lead to a better solution.

Algorithm 2 FirstFit
1: p← Initialize Solution(permutation)
2: finishF lag ← false
3: while not finishFlag do
4: finishF lag ← true
5: for i← 1 to n do
6: for j ← 1 to n do
7: compute dCi,j using Equation(1)
8: if dCi,j > 0 then
9: p← INSERT(p, i, j) {update the solution}

10: finishF lag ← false
11: end if
12: end for
13: end for
14: end while

In this algorithm, the computation of dCi,j using Equation(1) is very time-
consuming, since each entry takes O(n) time. If the “WHILE-LOOP” runs T1
times, the whole algorithm will need T1n

2O(n) = T1O(n3) time.

dCi,j =

{
dCi,j−1 + (cpj ,pi − cpi,pj ) for i < j
0 for i = j
dCi,j+1 + (cpi,pj − cpj ,pi) for j < i

(2)

Unlike FirstFit, BestFit search strategy uses Equation(2) to compute all n2

dCi,j entries and finds the best solution among all n2 possible moves. Since each
entry can be computed in O(1) time, if the whole algorithm terminates after t2
iterations, it will take t2O(n2) time.

It’s expected that t2 < T1n
2 because BestFit tends to take the “faster”

ascent direction to a local maximum. On the other hand, usually t2 � T1 since
in each “round”, FirstFit has up to n2 INSERT moves, while BestFit makes 1
best INSERT move. This may explain the results in [1] that BestFit even takes
more real CPU time than FirstFit.

We propose a FastFit search strategy that takes advantage of the strengths
of both approaches. By using the idea of the “cache”, we set a “dirty” flag in
our algorithm. As long as no actual INSERT move is made, the dCi,j cache
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Algorithm 3 FastFit
1: p← Initialize Solution(permutation)
2: finishF lag ← false
3: while not finishFlag do
4: finishF lag ← true
5: for i← 1 to n do
6: dirtyF lag ← false
7: dCi,i ← 0
8: for j ← i + 1, i + 2, ..., n; i− 1, i− 2, ..., 1 do
9: if dirtyFlag then

10: compute dCi,j using Equation(1)
11: dirtyF lag ← false
12: else
13: compute dCi,j using Equation(2)
14: end if
15: if dCi,j > 0 then
16: p← INSERT(p, i, j) {update the solution}
17: finishF lag ← false
18: dirtyF lag ← true
19: end if
20: end for
21: end for
22: end while

is always “clean”, so we can compute the next dC entry in O(1) time. Only
after one actual INSERT move, the dC cache becomes “dirty” so that O(n)
time is needed to compute dCi,j . If the “WHILE-LOOP” runs T3 times, the
whole FastFit algorithm would need T3O(n2) + t3O(n), where t3 is the number
of INSERT moves made to reach a local maximum.

It is expected that T3 ≈ T1, as FastFit and FirstFit are very similar. We
have t2 � T1, so T3 � t2. Therefore, FastFit is expected to be much faster than
BestFit and FirstFit.

3 Preliminary Experiments

A typical Genetic Algorithm may have 100 individuals, while crossover rate
and mutation rate are set to be 0.8 and 0.05 respectively. However, performance
of a Genetic Algorithm may be very sensitive to the settings of these parameters.
And there also may be some interaction effects between crossover type, mutation
type, crossover rate and mutation rate. Since it’s too computationally exhaus-
tive to experiment all such combinations, therefore, in this section, preliminary
experiments are conducted to tune our GA with FastFit local search strategy.

25 instances from [2] are used for our preliminary experiments. These in-
stances are the same as those instances with n = 75 in “Random Instances Set
B”(see Section 4.3).

3.1 Combination of Crossover Operators and Mutation Operators

First, we experiment the combination of crossover and mutation operators
with the configuration : crossover rate = 0.8, mutation rate = 0.05,
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Table 2. Combination of Crossover operators and Mutation operators

OX CX PMX average std dev
DM 32916465.40 32915105.08 32916825.64 32916132.04 907.43

1-EM 32916657.56 32916144.60 32916548.52 32916450.23 270.24
2-EM 32916467.28 32915031.28 32917855.44 32916451.33 1412.15
5-EM 32917524.20 32915519.84 32918195.64 32917079.89 1392.13

10-EM 32917299.60 32914183.04 32917273.64 32916252.09 1791.90
average 32916882.81 32915196.77 32917339.78
std dev 495.66 718.71 687.97

population size = 100. Table 2 shows the average results of all 25 instances
for each combination.

From Table 2, the performance of different operators do not vary much.
Among these, the combination of crossover operator PMX and mutation operator
5-EM provides the best average result. However, PMX operator seems to be
slightly better than the other two crossover operators.

3.2 Tuning of Parameter mutation rate

Using the combination of PMX and 5-EM operator(denoted as GA PMX 5-EM),
now we consider the mutation rate parameter with crossover rate = 0.80 and
population size = 100.

Average
Result

mutation
rate (%)

32900000

32902000

32904000

32906000

32908000

32910000

32912000

32914000

32916000

32918000

32920000

0 1 2 3 4 5 6

Average
Time(sec)

mutation
rate (%)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6

Fig. 1. Tuning of Parameter mutation rate

crossover
rate (%)

Average
Result

32860000

32870000

32880000

32890000

32900000

32910000

32920000

32930000

0 10 20 30 40 50 60 70 80 90 100

Average
Time(sec)

crossover
rate (%)

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

Fig. 2. Tuning of Parameter crossover rate

Figure 1 shows the average results and CPU time taken for different
mutation rate. It’s reasonable that CPU time increases with the growth of
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mutation rate, because more mutation means more computation. But as you
can see in Fig. 1, the average result is nearly the same, which means the muta-
tion in our GA does not improve the solution’s quality significantly, hence we
set mutation rate = 0.

3.3 Tuning of Parameter crossover rate

Parameter crossover rate determines the probability of crossover happens in
GA. Fig. 2 shows the average results and consumed CPU time under configura-
tion : GA PMX, mutation rate = 0, population size = 100.

As shown in Fig. 2, the average result increases with the growth of
crossover rate, especially when it is less than 0.5. On the other hand, the
CPU time increases with crossover rate in a approximately linear manner.
With the compromise of time and solution quality, we choose crossover rate
= 0.5.

3.4 Tuning of Parameter population size

population size may be the most influential parameter in a Genetic Algorithm.
If population size is too small, there will be insufficient genetic diversity to
search the feasible solution space thoroughly. On the other hand, the algorithm
may be extremely slow when population size is too large.

Fig. 3 shows the preliminary results with different population size under
the configuration : GA PMX, no mutation, crossover rate = 0.50. With the
growth of population size, the average result increase consistently although
the increase becomes slower, while the CPU time consumed is approximately lin-
ear to population size. Therefore, it’s reasonable to choose population size
= 40, as it provide a good balance between solution quality and computing time.

3.5 Summary: Effect of Genetic Algorithm and Local Search

In our preliminary experiments, we examine the effects of both the Genetic
Algorithm and Local Search. The following four algorithms are compared:

– SimpleGA is the simple Genetic Algorithm without local search.
– LocalSearch(random) is a multi-round local search algorithm. In each round,

it starts with a random initial permutation and uses FastFit strategy to
improve the solution.

– hGA(untuned) is a hybrid Genetic Algorithm with the configuration : GA
with OX crossover operator, DM mutation operator, BestFit local search
strategy, crossover rate = 0.8, mutation rate = 0.05, population size
= 100. This stands for an untuned hybrid Genetic Algorithm.

– hGA(tuned) is our final hybrid Genetic Algorithm with the configuration
: GA with PMX crossover operator, no mutation operator, FirstFit local
search strategy, crossover rate = 0.5, population size = 40.

Fig. 4 shows the time-quality curve for these 4 algorithms. The vertical axis
shows the CPU time consumed, while the horizontal axis shows the average
result for the 25 instances that we experimented with.

The following remarks can be made from Fig. 4:
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Average
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Fig. 3. Tuning of Parameter population size
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Fig. 4. Time-Quality Curve

– SimpleGA is rather bad in performance.
– LocalSearch(random) has the ability to find relatively good solutions in a

short time. Unfortunately, even if much more time is given, this algorithm
cannot improve the best solution by much. For the 25 instances that we have
tested, no better solutions can be found after running 0.5 second.

– hGA(untuned) shows the power of hybridization of Genetic Algorithm and
Local Search. Given enough time, it is capable of finding competitive solu-
tions. However, it’s slower than LocalSearch(random) since even the initial-
ization alone will take more than 0.5 second.

– hGA(tuned) is about 10 times faster than hGA(untuned), which shows the
power of proper tuning a search method. Consequently, hGA(tuned) outper-
forms Tabu Search ans Scatter Search both in time and solution quality.

Guided by the Genetic Algorithm, it is possible for Local Search to improve
the quality of solution consistently; and with the help of Local Search, Genetic
Algorithm becomes competitive in finding good solutions.

4 Computational Results

Three widely-used sets of instances are tested to demonstrate the effectiveness
of our hybrid Genetic Algorithm. All the codes are implemented in C/C++ and
run on a PentiumIII 800Mhz PC. And for each instance, our hGA is run only
once.
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However, the computing machines used in previous papers are different, i.e.,
Intel Pentium 166Mhz PC, Intel PentiumIII 500Mhz, Sun SPARC 20 Model 71.
Therefore, in order to compare the CPU time, a scaling scheme is used according
to SPEC(http://www.specbench.org/osg/cpu2000/)1

4.1 LOLIB Instances

LOLIB may be the most widely-used testing instances for LOP. It contains 49
instances of real-world input-output tables from sectors in the European and
United States Economies. The data together with optimal solutions can be ob-
tained from www.iwr.uni-heidelberg.de/groups/comopt/software/LOLIB/

Nearly all papers on LOP use LOLIB as test instances: in [1], the results
of Chanas-Kobylanski algorithm(CK) and Tabu Search with path relinking(TS-
LOP) are reported. [2] shows computational results of two Scatter Search ver-
sions(SS, SS10). A Variable Neighborhood Search(VNS-LOP) algorithm is ap-
plied in [3], while [4] gives the results of a Lagrangian Based Heuristic(LH-VP).

Table 3. LOLIB (49 instances)

Avg.Obj. Deviation No. of Avg.CPU Times(sec)
Value from Opt. Optimal in P166 PIII500 PIII800

CK 22018008.35 0.15% 11 0.1
SS 22041229.8 0.01% 42 3.82

SS10 22041232.3 0.01% 43 14.28
LH-VP 0.00% 43 5.581

VNS-LOP 22041260.8 0.00% 44 0.87
TS-LOP 22041261.51 0.00% 47 0.93

hGA 22041263.82 — 49 < 0.2 < 0.05 0.0247

Table 3 shows for each algorithm the average objective function value over
all 49 instances, the average percent deviation from the optimal solution, the
number of optimal solutions a particular algorithm can reach, and the average
CPU time. It’s evident that our hGA outperforms all other algorithms, since
not only is it faster, but also it’s the only one algorithm which can provide all
optimal solutions for 49 instances.

4.2 Random Instances Set A

This set of instances is randomly generated by J. E. Mitchell and B. Borchers[8].
There are 30 instances, where the size of instances vary from 100 to 250. More
specifically, there are 5 instances with size n = 100 and n = 250 respectively, and
10 instances with size n = 150 and n = 200. Both the instances and optimal val-
ues are available at the website: www.rpi.edu/˜mitchj/generators/linord/

The results of Interior Point algorithm, Simplex Cutting Plane algorithm and
the combined of these two are reported in [8], while in [4] two Lagrangian Based
Heuristics(LH-PC and LH-VP) are applied to this set of instances.
1 SPEC(Standard Performance Evaluation Corporation) points out that PIII 800 is

not more 2 times faster than PIII500, not more 8 times faster than P166 and not
more 12 times faster than SPARC 20/71
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Table 4. Random Instances Set A (30 instances)

Avg.Obj. Deviation No. of Avg.CPU Times(sec)
Value from Opt. Optimal SPARC20 PIII500 PIII800

Interior — 26 2390.11
Simplex — 30 2697.33

Combined — 30 356.16
LH-PC 0.227% 16 605.13
LH-VP 0.014% 28 105.46
hGA 777324.17 — 30 < 24 < 4 1.9665

As you can see from Table 4, our hGA is 10 ∼ 100 times faster than those
exact algorithms and more than 25 times faster than Lagrangian Based Heuris-
tics. What’s more important, with respect to all these 30 instances, the solutions
obtained by our hGA are all optimal.

4.3 Random Instances Set B

This set includes 75 instances generated by Laguna et al.[1]2, which consists of
25 instances for each problem size n = 75, 150, 200 with each entries of the cost
matrix cij randomly distributed in (0, 25000). No optimal solutions are reported
for these instances by now, while the Tabu Search with path relinking strategy
(TS-LOP) gives the best result before our experiment.

Table 5. Random Instances Set B (75 instances)

Avg.Obj. Deviation No. of Avg. Times(sec)
Value from best best in P166 PIII800

CK 128663947.3 0.64% 0 10.67
CK-10 128919838.0 0.39% 0 108.44

TS-LOP 129269367.5 0.11% 5 20.19
hGA 129437686.3 — 75 < 18 2.2402

Table 5 shows the results of our experiment. As you can see, our hGA al-
gorithm gives better solutions than TS-LOP for 70 instances, for the other 5
instances the solutions between hGA and TS-LOP are same. It is clear that our
hGA outperforms TS-LOP.

5 Conclusion

The Linear Order Problem is studied in this paper. We designed a hybrid Ge-
netic Algorithm by integrating Genetic Algorithm and Local Search strategy
successfully. Experiments indicate that parameters are influential for genetic al-
gorithm. We described the procedure of tuning the parameters and develop a
FastFit algorithm to accelerate the local search. As a result, the algorithm after
tuning becomes 10 times faster than before.

Computational results show that our hybrid genetic algorithm outperforms
all other existing exact and heuristic algorithms.
2 The authors would like to express special thanks to Prof. Manuel Laguna for pro-

viding the instances and detail results of TS-LOP.
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