Skip to main content

Wise Breeding GA via Machine Learning Techniques for Function Optimization

  • Conference paper
  • First Online:
Book cover Genetic and Evolutionary Computation — GECCO 2003 (GECCO 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2723))

Included in the following conference series:

Abstract

This paper explores how inductive machine learning can guide the breeding process of evolutionary algorithms for black-box function optimization. In particular, decision trees are used to identify the underlying characteristics of good and bad individuals, using the mined knowledge for wise breeding purposes. Inductive learning is complemented with statistical learning in order to define the breeding process. The proposed evolutionary process optimizes the fitness function in a dual manner, both maximizing and minimizing it. The paper also summarize some tuning and population sizing issues, as well as some preliminary results obtained using the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baluja, S.: Population-based incremental learning: A method for integrating genetic search function optimization and competitive learning. Technical Report CMU-CS-94-163, Carnegie Mellon University (1994)

    Google Scholar 

  2. Baluja, S.: An empirical comparation of seven iterative and evolutionary function optimization heuristics. Technical Report CMU-CS-95-193, Carnegie Mellon University (1995)

    Google Scholar 

  3. Juels, A., Wattenberg, M.: Stochastic hillclimbing as a baseline method for evaluating genetic algorithms. Technical Report CSD-94-834, Computers Science Department, University of California at Berkeley, USA (1995)

    Google Scholar 

  4. Mühlenbein, H., Paaß, G.: From recombination of genes to estimation of distributions I. In: Lecture Notes in Computer Science 1411: Parallel Problem Solving from Nature-PPSN IV, Springer (1996) 178–187

    Google Scholar 

  5. Larrañaga, P., Lozano, J.: Estimation of Distribution Algorithms. GENA 2. Kluwer Academic Publishers (2002)

    Google Scholar 

  6. Mühlenbein, H.: The equation for response to selection and its use for prediction. Evolutionary Computation 5 (1998) 303–346

    Article  Google Scholar 

  7. Harik, G., Lobo, F., Goldberg, D.: The compact genetic algorithm. In: Proceedings of the IEEE Conferrence on Evolutionary Computation, IEEE press (1998) 523–528

    Google Scholar 

  8. Pelikan, M.: Bayesian Optimization Algorithm: from single level to hierarchy. PhD thesis, University of Illinois at Urbana Champaign, Urbana, Illinois, USA (June, 2002)

    Google Scholar 

  9. Pelikan, M., Goldberg, D., Cantú-Paz, E.: BOA: the Bayesian Optimization Algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), Morgan Kaufmann (1999) 525–532

    Google Scholar 

  10. Michalski, R.: Learnable Evolution: Combining Symbolic and Evolutionary Learning. In: Proceedings of the 4th International Workshop on Multistrategy Learning, Decenzano del Garda, Italy. (June 11–14, 1998)

    Google Scholar 

  11. Michalski, R.: Learnable Evolution Model: Evolutionary Processes Guided by Machine Learning. Machine Learning 38 (2000) 9–40

    Article  MATH  Google Scholar 

  12. Wnek, J., Kaufman, K., Bloedorn, E., Michalski, R.: Inductive Learning System AQ15c: The Method and User’s Guide. Reports of the Machine Learning and Inference Laboratory, MLI 95-4, George Manson University, Fairfax, VA (March, 1995)

    Google Scholar 

  13. Kaufman, K., Michalski, R.: The AQ18 Machine Learning and Data Mining System: An Implementation and User’s Guide. Reports of the Machine Learning and Inference Laboratory, George Manson University, Fairfax, VA (1999)

    Google Scholar 

  14. Quinlan, J.R.: Induction of decision trees. Machine Learning 1 (1986) 81–106

    Google Scholar 

  15. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann (1993)

    Google Scholar 

  16. Baluja, S., Caruana, R.: Removing the genetics from standard genetic algorithms. In: International Conference on Machine Learning, Morgan Kaufmann (1995) 38–46

    Google Scholar 

  17. Mitchell, T.M.: Machine Learning. McGraw Hill (1997)

    Google Scholar 

  18. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer Academic Publishers (2002)

    Google Scholar 

  19. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press/Bradford Books edition (1975)

    Google Scholar 

  20. Gonzalez, C., Lozano, J., Larranarraga, P.: Analyzing the pbil algorithm by means of discrete dynamical systems. Complex Systems 12 (2001) 465–479

    Google Scholar 

  21. Haussler, D.: Quantifying inductive bias: AI learning algorithms and Valiant’s learning framework. Artificial Intelligence 36 (1988) 177–221

    Article  MATH  MathSciNet  Google Scholar 

  22. Valiant, L.: A theory of the learnable. Communications of ACM 27 (1984) 1134–1142

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Llorà, X., Goldberg, D.E. (2003). Wise Breeding GA via Machine Learning Techniques for Function Optimization. In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2723. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45105-6_125

Download citation

  • DOI: https://doi.org/10.1007/3-540-45105-6_125

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40602-0

  • Online ISBN: 978-3-540-45105-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics