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Abstract. Reliable execution and analysis of an evolutionary algorithm
(EA) normally requires many runs to provide reasonable assurance that
stochastic effects have been properly considered. One of the first stochas-
tic influences on the behavior of an EA is the population initialization.
This has been recognized as a potentially serious problem to the per-
formance of EAs but little progress has been made in improving the
situation. Using a better population initialization algorithm would not
be expected to improve the many-run average performance of an EA,
but instead, it would be expected to reduce the variance of the results,
without loss of average performance. This would provide researchers the
opportunity to reliably examine their experimental results while requir-
ing fewer EA runs for an appropriate statistical sample. This paper uses
recent advances in the measurement and control of a population’s disper-
sion in a search space to present a novel algorithm for better population
initialization. Experimental verification of the usefulness of the new tech-
nique is provided.

1 Introduction

Execution and analysis of an evolutionary algorithm (EA) normally requires
many runs to provide reasonable assurance that any negative effects of merely
“bad luck” in the stochastic processes have been overcome. One of the first
stochastic influences on the behavior of an EA is the population initialization.
This has been recognized as a potentially serious problem to the performance
of EAs in [1], and, to a lesser extent, in [2], but little progress has been made
in improving the situation. In the few cases where this situation is addressed
at all, populations, in very low dimensionality problems, have been initialized
using techniques like the Latin Hypercube [2]. The Latin Hypercube technique
guarantees uniform placement along each axis, but uniform placement along
individual axes does not ensure any level of uniformity throughout the search
space.

EAs are generally executed many times to overcome stochastic anomalies,
so using a better population initialization algorithm would not be expected to
improve the average performance of an EA. Instead, it would be expected to
reduce the variance of the results, without loss of average performance. This
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would provide researchers the opportunity to reliably examine their experimental
results while requiring fewer EA runs for an appropriate statistical sample.

This paper provides a description of the population initialization problem, an
introduction to low-discrepancy sequences, the derivation of a new and compu-
tationally efficient population initialization algorithm, and experimental results
that demonstrate the usefulness of the algorithm.

2 Problem Description

We desire to improve the search capability of the initial population by spreading
the individual members throughout the search space so that their positioning
maximizes the probability of detection of a landscape feature of interest. Let’s
take a deeper look at more precisely what this means.

In the general case, for any specific population size, P , in N dimensions, this
is equivalent to solving an N -dimensional sphere packing problem. The problem,
however, is expressed in terms of the packing space size and the number of
spheres, and must be solved for the sphere radius and the coordinates of the
packed spheres. The sphere center coordinates would then be the population
positions. While much research has been done in sphere packing problems [3] [4],
efficient methods for solving the above problem have not been identified. Note
that we would also like to avoid adding significant computational complexity to
our EA.

The population placement problem becomes even more difficult if we wish
to use a variety of population sizes. We would like the ability to initialize dif-
ferent sized population for a problem without needing to re-perform a complex
population initialization algorithm. We would like, therefore, to be able to ap-
propriately add or delete population members to an initialization distribution
that we have already computed.

The identification of the largest unoccupied volume for the placement of the
“next” population member in N -space already occupied by a population is an in-
teresting problem. The normal N -dimensional space partitioning techniques such
Delaunay triangulation [5], or other space partitioning methods involving poly-
topes, do not assist in the identification of the largest unoccupied N -dimensional
volume. Application of these techniques to our problem could result in an un-
intentional division of the largest unoccupied volume by inappropriate space
partitioning edge placement, rather than point placement.

Another area of research that could be used for placing points in N -
dimensional space includes meshing techniques such as t-m-s nets [6]. As a pow-
erful mechanism for placing points uniformly in N -dimensional space, t-m-s nets
cover space in base b in dimension N , requiring bN points to assure uniform
spatial coverage. Since the process starts by partitioning the space into bN cells
and we wish to use a varying number of points, the mesh-generating techniques
are generally inappropriate for our application.

Since we are trying to place all population members such that the distance
to a any point in the search space is minimized, ideally we would like to place an
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additional population member into an existing population at the mid-point of
the largest unoccupied symmetrical volume. What we are in need of is a compu-
tationally efficient algorithm that is better than a random number generator in
efficiently placing a population uniformly throughout a search space, occupying
unoccupied volumes first. The specialty field in mathematics that has done some
exploration into this type of problem is called low-discrepancy sequence genera-
tion [7]. The key idea in this field of mathematics is discrepancy measurement,
so first we will provide a short introduction to discrepancy measurement.

3 Discrepancy Measurement

Discrepancy measurement identifies how uniformly a set of points sample a
search space. Discrepancy measurement involves concepts that are loosely based
on the same ideas as the Kolomogorov-Smirnov (K-S) test, when used to compare
a distribution of points to the uniform distribution. The K-S test compares an
ordered set of P points Xi to a continuous distribution by computing the differ-
ence between the discrete cumulative distribution of the points with cumulative
distribution of the desired continuous distribution. The hypothesis regarding the
distributed form of the points is rejected if a test statistic, D, is greater than
the critical value.

Unfortunately, the cumulative probability distribution is not well defined in
more than one dimension. So for higher dimensions the common measure of
spatial uniformity is discrepancy. While not providing a test statistic for uni-
formity, discrepancy can be used to compare sequences of points in N -space to
determine which sequence is more uniform. Discrepancy measures consider the
N -dimensional �N space modulo 1 or, equivalently, the N -dimensional torus
TN = �N

ZN . Instead of identifying the largest difference between cumulative distri-
butions of points and the desired distribution, as the K-S test does, discrepancy
identifies the largest difference between the proportion of points included in an
N -dimensional space partition and the proportion of the total volume (Lebesgue
measure) included in that partition, over all possible space partitions.

Discrepancy, DP , of a sequence of points, (xp)p≥1, xp ⊆ �N , as further elabo-
rated in [7], is useful for comparing the uniformity sequences, because a sequence
is uniformly distributed modulo 1 if and only if:

lim
P→∞

DP (xP ) = 0. (1)

As a mathematically sound method for computing the uniformity of a distri-
bution of points in an N -dimensional space, it is unfortunate that discrepancy
measurement is generally too computationally expensive to be practically em-
ployed in most EA problems involving assessment of the dispersion of points
in a search space. Recently [8] developed a computationally efficient method for
measuring a population’s dispersion throughout a search space, called the disper-
sion index, ∆. This measure is based on on the concepts of discrepancy theory
and provides practical improvements over the more commonly used diversity
measurements.
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Applying discrepancy theory concepts to our population initialization prob-
lem, we turn to research in the generation of low-discrepancy sequences. This
research is focused on methods for placing points uniformly in multi-dimensional
spaces. Most of the research into low-discrepancy sequences is involved in estab-
lishing upper and lower bounds on the discrepancy of various sequence generation
algorithms, through algorithmic proofs or example construction.

The research in this field yields sequences with the smallest values of dis-
crepancy (in the limit) currently known [9] [10]. There is, however, no evidence
that these sequences will perform well in an application such as ours, where only
a small number of points near the beginning of the sequence will actually be
used. Additionally, our application has computational efficiency requirements,
and none of the research appears to adequately address this requirement. In the
following sections, applying the low-discrepancy sequence generation methods,
we derive a computationally efficient, heuristic sequence generation algorithm
for an N -dimensional space that has the attributes we desire.

3.1 Population Placement Basis

For the construction of our population placement algorithm, we used some of the
research on the kα sequence for an irrational α. This is a well-studied sequence
and is known to be uniformly distributed modulo 1 [7].

This sequence has been extended into N -dimensions, through what is known
as the Kroenecker sequence [10]. The Kroenecker sequence is based on the fol-
lowing theorem, from [7]. Let β1, ..., βN ∈ �. Then:

Theorem 1:
The N -dimensional sequence: xk = (kβ1, ...kβN ) is uniformly distributed modulo
1 if and only if 1, β1, ..., βN are linearly independent over the integers Z.

This is an extension of the kα sequence since, for β1...βN to be lin-
early independent over the integers, there are no integers mi ∈ Z such that
1, m1β1 + ... + mNβN = 0. In other words, the β’s must be irrational. So, using
our notation convention, we will refer to these numbers in future references as
α’s (i.e., kα1, ...kαN ).

The mathematical study of low-discrepancy sequences is usually focused on
the sequence discrepancy in the limit for large numbers of points. We, however,
aren’t really interested in theoretical convergence for large sequences. We are
interested in the uniformity of the distribution of the first few points (perhaps as
high as several hundred) of the sequence. The extreme computational efficiency
of the Kroenecker sequence, once the α’s are identified, makes it very attractive
for our application.

So our contribution here is to devise a set of rules for using the concepts of
the Kroenecker sequence to construct a reasonably uniformly distributed set of
points in N -space for the range of dimensions and range of number of points of
interest for EA applications. We will then use those rules to derive a set of α’s
that EA practitioners and researchers can use. To understand the problem, we
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will first illustrate that the Kroenecker sequence does not, by itself, necessarily
provide the desired uniformity of the initial points in a sequence. Figure 1 illus-
trates one type of non-uniform initial point distributions that can be generated
a by badly chosen, but irrational, α’s in two dimensions. This sequence will be
uniformly distributed in the long run, but is a very bad choice with respect to
the initial few points.

Fig. 1. 50 Kroenecker Sequence Points #1

4 Heuristic Rules

What we need is “good mixing” for the first few hundred points of the sequence.
To accomplish this, we have developed a set of heuristic rules to choose α’s
with good inter-dimensional mixing. The rules will first be delineated, then the
reasons for each of these heuristics will be described.

1. Base the incremental intervals for each dimension on multiples of the “Golden
Ratio” which is: φ =

√
5+1
2 .

2. Select the multiples of φ for each dimension from sequences of prime num-
bers.

3. Examine the resultant modulo 1 sequences for the quasi-period with which
they revisit a value near the initial value (this is done by examining the
sequential distance difference as described below). If a multiplier results in
either a very short or trivial sequence of sequential differences, or closely
matches the sequential difference sequence of a previously selected multiplier,
do not use that multiplier, use the next prime number instead.

The reasons for these heuristics are fairly straightforward. The first rule is
based on the fact that to achieve good mixing in the initial points of the se-
quence, we need a “very” irrational number. Irrational numbers are classified by
how easy they are to approximate with continued-fraction ratios of integers. For
example,

√
2, which is irrational, would be inappropriate to use since it is well

approximated by a continued fraction sequence.
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The “Golden Ratio” mentioned previously, normally represented by φ, is the
irrational number that is most poorly approximated through continued fractions
[11]. This is the obvious choice for uniformly of a one-dimensional placement,
since the more irrational α is, the more uniformly distributed is the first part
of the sequence of P points Pi = {Kiα}, where Ki = 1, 2, 3...P [10]. However,
the use of φ only guarantees best placement in one dimension. If the same α
(or any integer multiple of the same α) is used for a Kroenecker sequence in
more than one dimension, the points are merely placed along a diagonal in those
dimensions. This is why the Kroenecker sequence requires linear independence
of the α’s among Z. Since it can be very difficult to prove that a number is
irrational or that multiple irrational numbers are linearly independent over Z,
this brings us to the second heuristic rule.

The second rule is to select the multiples of φ for each dimension from se-
quences of prime numbers, avoiding the prime numbers 1 and 2. What we need
to accomplish here is to force the pair-wise relationship between dimensions to
be irrational. Ratios of prime numbers approximate irrational numbers and this
method makes the ratios of the step sizes between any two dimensions relatively
irrational. 1 This approximation is adequate for our purposes, as long as the
sequences generated provide good placement and good inter-dimensional mix-
ing. Since, however, multiples of φ do not necessarily have the same placement
uniformity as φ, we come to the third heuristic rule.

This third heuristic rule is designed to improve mixing across multiple dimen-
sions. In a sequence kZ1α modulo 1, for k = 1, 2, 3, ... and Zi ∈ Z, values within a
distance ε of the first point are visited quasi-periodically, with the sequential dif-
ferences between these quasi-periods forming an easily recognizable pattern, but
with occasional and irregular breaks in the pattern. An example of this is shown
as Figure 2. In this figure, the distance to the starting point of a Kroenecker
sequence is plotted for 50 points. As can be seen, for ε = .10 the distance is less
than ε at k = 6, 14, 18, 22, 26, 31, 35, 39, 43, 48.... The sequential difference be-
tween the k values are 8, 4, 4, 4, 5, 4, 4, 4, 4, .... When these sequential differences
form trivial patterns like this (or, for example, 3, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 3, 5),
or are identical to the patterns already selected for other prime multipliers, the
fill patterns across multiple dimensions are usually not adequately mixed. These
sequences are easily checked using a simple spreadsheet, and, if an undesired se-
quence is encountered, the next prime number in the sequence should be selected
as the multiplier.

Table 1 provides recommended α values for 1 through 12 dimensions that
were derived using the heuristic rules described above. The Table also provides
the Dispersion Index, ∆ from [8] for populations of the first 50 points generated
using these α’s. The Dispersion Index, ∆ measures the uniformity of the pop-
ulation dispersion and has a maximum value of 1.00 for a completely uniform
distribution. While the recommended α’s in Table 2 are not guaranteed to be

1 Sequential very large prime numbers must also not be used, since the ratio of two
sequential very large prime numbers closely approximates 1.0 and will result in a
violation of the next heuristic rule.
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Fig. 2. Quasi-Periodic Distance to the First Point

the optimal α’s for use with any specific EA problem, these prime numbers are
known to provide reasonably uniform spatial distributions for the first 200 points
in dimensions up through 12.

Table 1. Prime α’s and Dispersion Indices for 50 Points, Dimensions 1 through 12

Dimension α ∆

1 41 0.9871
2 43 0.9841
3 47 0.9702
4 59 0.9874
5 83 0.9738
6 107 0.9795
7 109 0.9853
8 173 0.9853
9 311 0.9853
10 373 0.9910
11 401 0.9999
12 409 0.9910

The resultant heuristic sentinel placement algorithm works as follows. First
scale and offset all search-space dimensions as necessary to set each dimensional
range from 0 to 1. Second, randomly place the initial sentinel point, xi, within
the search space, for i equal 1 to N . Finally, compute the coordinates of each
subsequent point P , xi,p ∈ P , as:

xi,p = mod1[xi,p−1 + Ziφ], (2)

where the Zi’s are selected for each dimension in accordance with the heuristic
rules specified.

As can be seen, the coordinates of each point can easily (and very computa-
tionally efficiently) be determined from the location of the previous point, once
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the Zi’s are selected through an off-line process for the range of dimensions and
population sizes appropriate for your problem domain. Note that nothing more
need be known about the problem space than the number of dimensions and
the approximate size of the population of sentinels to be used, and that this
information is used off-line in a simple spreadsheet calculation.

4.1 Population Placement in Very High-Dimensional Search Spaces

Very high-dimension search spaces would require a large set of prime numbers
that obey the heuristic rules for selection. These can be difficult to find, although
all effort expended in finding them is performed off line and does not affect
the EA performance. More important, however, is the fact that it is probably
not worth the effort. In large dimensional spaces, the distances between points
increase rapidly. With very large distances between only a few points, the benefit
of placing population members “uniformly” versus “randomly” diminishes. For
this and other reasons, several mathematical researchers have expressed doubts
about the usefulness of uniform distribution methods for dimensions higher than
about 12 [12] [9]. Because of this, if the dimensionality of the problem is greater
than 12, random population placement is recommended. Up through dimension
12, Table 1 provides a pre-computed set of α’s.

4.2 Population Placement in Complex Search Spaces

Up until this point, we have only been describing population placement in sym-
metric, real-numbered search spaces. Fortunately, the transition to other search
spaces is quite straightforward.

The use of this technique for asymmetric search spaces is straightforward.
Since the population placement algorithm is so computationally efficient, simply
compute the population as if the search space was symmetric in all axes (using
the largest axis, scaled 0 to 1 as the basis), and disregard any points falling out-
side the search space. Compute additional points, continuing to discard those
falling outside of the search space, until the desired number of population mem-
bers fall within the search space.

Similarly, the use of this technique for search spaces involving non-binary
combinatorial problems is also straightforward. If, for example, one of the axes
of the search space involves four non-ordinal values, a simple partitioning of the
axis into four equal-length segments to represent the four values will suffice for
problem initialization. Since the placement algorithm assures reasonably uniform
inter-dimensional dispersion for problem initialization, this technique will pro-
vide an appropriate representation of population members dispersed throughout
the search space.

5 Experimental Verification

To examine the usefulness of the sentinel placement algorithm for population
initialization, a simple genetic algorithm (GA) with gray code binary represen-
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tation, fitness-proportional selection, uniform crossover, and a mutation rate of
0.001 was used. This GA was run against a variety of different problems of vary-
ing complexity. A few representative results are provided here. The problems
presented are:

– De Jong Test Function 2, also called Rosenbrock’s Function, in 2 dimensions
[13].

– De Jong Test Function 3, a step function, in 5 dimensions [13].
– Michalewicz’s Function, in 10 dimensions [13].

A population of 25 was used. The De Jong test functions #2 and #3 and the
Michalewicz test function are usually implemented as minimization functions,
but were implemented as maximization functions for these experiments, applying
the following equations respectively:

f(x) = 3907 − 100(x2
1 − x2)2 + (1 − x1)2, for x1,2 ∈ [−2.048, 2.048]. (3)

f(x) = 25.0 −
N∑

i=1

|xi|, for xi ∈ [−2.048, 2.048]. (4)

f(x) =
N∑

i=1

((sin(xi))(sin(
ix2

i

π
))20), for xi ∈ [0, π]. (5)

The GA was run on each of these problems 100 times using random popu-
lation initialization and 100 times using placed population initialization (recall
that, since the placement algorithm uses a random place for the first placed
point, each “placed population” will be different, but equivalently dispersed in
the search space). Since these are static problems, the average “best-so-far,”
along with its variance, for the 100 runs are reported as the measures of effec-
tiveness in this chapter.

The results of the first 25 generations of the above experiments are graphed
in Figures 3 through 8. As can be seen in Figures 3 and 4 there appears to be a
considerable reduction in variance for De Jong Test Function 2. The other charts
show less dramatic results, so the results were further analyzed to determine their
statistical significance.

6 Analysis

At any specific generation, the F-statistic can be used to determine whether the
differences between the two variances are statistically significant.

Table 2 provides a look at the significance of the variance difference seen at
generation 10 in each of the figures from the previous section. For each technique,
the mean best-so-far (BSF) fitness at generation 10, the variance of the mean
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Fig. 3. Best So Far, Random Initializa-
tion, DeJong Test Function 2

Fig. 4. Best So Far, Placed Initialization,
DeJong Test Function 2

Fig. 5. Best So Far, Random Ini-
tialization, DeJong Test Function 3, 5-
Dimensions

Fig. 6. Best So Far, Placed Initialization,
DeJong Test Function 3, 5-Dimensions

Fig. 7. Best So Far, Random Ini-
tialization, Michaeliwicz’s Function, 10-
Dimensions

Fig. 8. Best So Far, Placed Initialization,
Michaeliwicz’s Function, 10-Dimensions
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Table 2. Results of Different Population Initialization at Generation 10

Test BSF Mean Variance F Confidence
De Jong 2 2D random 3905.10 2.12 3.867 99+%
De Jong 2 2D placed 3905.32 0.55 - -
- - - - -
De Jong 3 5D random 20.90 2.53 1.326 76%
De Jong 3 5D placed 21.15 1.91 - -
- - - - -
Michalewicz 10D random 3.00 0.26 1.135 77%
Michalewicz 10D placed 3.10 0.23 - -

fitness at generation 10, the F statistic computed as the ratio of the squares of
the two variances, and the confidence level that the variances are different.

As expected, there was no significant difference in the mean best-so-far per-
formance of the EAs attributable to the population initialization algorithm (the
t statistic is therefore omitted for brevity), but there was generally a reduction
in the variance of the mean best-so-far performance. As addressed previously, at
high dimensions the advantage of the placement algorithm is reduced.

7 Summary

In this paper we have derived a population initialization algorithm for EAs in
static environments. Use of the technique does not improve mean best-so-far
performance over a large number of runs. Instead, it reduces the variance of the
mean best-so-far performance without loss of average performance, thereby pro-
viding researchers the opportunity to reliably examine their experimental results
needing fewer EA runs for an appropriate statistical sample. This may provide
an opportunity for researchers to address more complex problems without an
attendant increase in required computational resources.
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