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Abstract. When considering function optimisation, there is a trade off
between quality of solutions and the number of evaluations it takes to
find that solution. Hybrid genetic algorithms have been widely used for
function optimisation and have been shown to perform extremely well
on these tasks. This paper presents a novel algorithm inspired by the
mammalian immune system, combined with a unique mutation mech-
anism. Results are presented for the optimisation of twelve functions,
ranging in dimensionality from one to twenty. Results show that the im-
mune inspired algorithm performs significantly fewer evaluations when
compared to a hybrid genetic algorithm, whilst not sacrificing quality of
the solution obtained.

1 Introduction

The problem of function optimisation has been of interest to computer scientists
for decades. Function optimisation can be characterised as, given an arbitrary
function, how can the maximum (or minimum) value of the function be found.
Such problems can present a very large search space, particularly when dealing
with higher-dimensional functions. Genetic algorithms (GAs) though not ini-
tially designed for such a purpose, however, they soon began to grow in favour
with researchers for this task. Whilst the standard GA performs well in terms
of finding solutions, it is typical that for more complex problems, some form of
hybridisation of the GA is performed: typically, an extra search mechanism is
employed as part of the hybridisation, for example hill climbing, to help the GA
perform a more effective local search near the optimum [10].

In recent years, interest has been growing in the use of other biologically in-
spired models: in particular the immune system, as witnessed by the emergence
of the field of Artificial Immune Systems (AIS). AIS can be defined as adaptive
systems inspired by theoretical immunology and observed immune functions and
principles, which are applied to problem solving [5]. This insight into the immune
system has led to an ever increasing body of research in a wide variety of do-
mains. To review the whole area would be outside the scope of this paper, but
work pertinent to this paper is work on function optimisation [4], extended with
an immune network approach in [6] and applied to multi-modal optimisation.
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Other germane and significant papers include [19], where work there is con-
sidered on multi-objective optimisation. However, work proposed in this paper
varies significantly in terms of population evolution and mutation mechanisms
employed.

This paper presents initial work into the investigation of immune inspired
algorithms for function optimisation. A novel mutation mechanism has been de-
veloped, loosely inspired by the mutation mechanism found in B-cell receptors
in the immune system. This coupled with evolutionary pressure observed in the
immune system, leads to the development of a novel algorithm for function opti-
misation. Experiments with twelve different functions have shown the algorithm
to perform significantly fewer evaluations when compared to a standard hybrid
GA, whilst maintaining high accuracy on the solutions found.

This paper first outlines a hybrid genetic algorithm which might typically be
used for function optimisation. Then there follows a short discussion on immune
inspired algorithms which outlines the basis of the theoretical framework under-
pinning AIS. The focus of the paper then turns to the novel B-cell algorithm,
followed with the presentation and initial analysis of the first empirical results
obtained. Conclusions are drawn and future research directions are explored.

2 Hybrid Genetic Algorithms

Hybrid genetic algorithms (HGAs) have, over the last decade, become almost
standard tools for function optimisation and combinatorial analysis: according
to Goldberg et. al., real-world business and engineering applications are typically
undertaken with some form of hybridisation between the GA and a specialised
search [10]. The reason for this is that HGAs generally have an improved per-
formance, as has been demonstrated in such diverse areas as vehicle routing [2]
and multiple protein sequence alignment [16]).

As an example, within a HGA a population P is given as candidates to
optimised an objective function g(x). Each member of the population can be
thought of as a vector v of bit strings of length l = 64 (to represent double-
precision floating point numbers, although this does not have to be the case)
where v ∈ P and P is the population. Hybrid genetic algorithms employ an extra
operator working in conjunction with crossover and mutation which improves the
fitness of the population. This can come in many different guises: sometimes it is
specific to the particular problem domain; when dealing with numerical function
optimisation, the HGA is likely to employ a variant of local search. The basic
procedure of a HGA is given in figure 1. The local search mechanism functions by
examining the neighbourhood of the fitness individuals within a given landscape
of the population. This allows for a more specific search around possible solutions
that results in a faster convergence rate to a possible solution. The local search
typically operates as described in figure 2. Notice that there are two distinct
mutation rates utilised: the standard genetic algorithm typically uses a very low
level of mutation, and the local search function h(x) uses a much higher one, so
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we have δ << ρ. This process outlined in figure 2. This method of hybridising a
GA is adopted as the model for the HGA used in this paper.

1. Initialisation: create an initial random population (P ) of individuals v;
a) Fitness evaluation: ∀v ∈ P : evaluate fitness of P (v) with objective function

g(x);
b) Diversity

i. Selection and crossover: Select n number of fittest individuals and with
probability p perform crossover between selected individuals;

ii. Mutation: subject t number of individuals of the population to a low level
of mutation with an equally low probability;

c) Utilise hybrid function: subject s members of the population to a hybrid search
technique h(x); if a higher-fitness member results, return this to the popula-
tion;

d) Cycle: repeat from step (a) until a certain stopping criterion is met.

Fig. 1. Generic Hybrid GA algorithm

1. Select: copy v to v′;
2. Explore neighbourhood: apply mutation to v′ with probability ρ;

a) Generate number of mutations: Subject v′ to mutation: Nmut = f(ρ);
b) Generate mutation sites: for Nmut, randomly select sites on v′ and perturb bit

string;
3. Fitness Evaluation: if g(v′) > g(v), replace v so that v′ ∈ P ;

Fig. 2. Example of local search mechanism for a HGA

3 Artificial Immune Systems

There has been a growing interest in the use of the biological immune system
as a source of inspiration to the development of computational systems [5]. The
natural immune system protects our bodies from infection and this is achieved by
a complex interaction of white blood cells called B Cells and T Cells. Essentially,
AIS is concerned with the use of immune system components and processes as
inspiration to construct computational systems. This insight into the natural im-
mune system has led to an increasing body of work in a wide variety of domains.
Much of this work emerged from early work in theoretical immunology [13], [8]
and where mathematical models of immune system process were developed in
an attempt to better understand the function of the immune system. This acted
as a mini-catalyst for computer scientists, examples being work on on computer
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security [9] and virus detection [14]. Researchers realised that, although the com-
puter security metaphor was a natural first choice for AIS, there are many other
potential application areas that could be explored such as machine learning [18],
scheduling [12] and optimisation [4].

Recent work in [5] has proposed a framework for the construction of AIS. This
framework can described in three layers. The first layer is one of representation
of the system, this is termed shape space and define the components for the
system. A typical shape space for a system may be binary, where elements within
each component can take either a zero or one value. The second layer is one
of affinity measures: this allows for the measurement of the goodness of the
component when measured against the problem. In terms of optimisation, this
would be in terms of how well the values in the component performed with
respect to the function being optimised. Finally, immune algorithms control the
interactions of these components in terms of population evolution and dynamics.
Such basic algorithms include negative selection, clonal selection and immune
network models. These can be utilised as building blocks for AIS and augmented
and adapted as desired. At present, clonal selection based algorithms have been
typically used to build AIS for optimisation. This is the approach adopted in
this paper. Work in this paper can be considered as an augmentation to the
framework in the area of immune algorithms, rather than offering anything new
in terms of representation and affinity measures.

3.1 An Immune Algorithm for Optimisation

Pertinent to work in this paper is work in [4]. Here the authors proposed an
algorithm inspired by the workings of the immune system, in a process known
as clonal selection. There are other examples of immune inspired optimisation
such as [11], however these will not be discussed here. The reader is directed to
[5] for a full review of these techniques. Clonal selection is the process by which
the immune system is said to respond to invading organisms (pathogens, which
then become antigens). The process is conceptually simple: the immune system
is made up of cells known as T-cells and B-cells (all of which have receptors
on them which are capable of recognising antigens, via a binding mechanisms
analogous to a lock and key). When an antigen enters the host, receptors on
B-cells and T-cells attach themselves to the antigens. These cells become stim-
ulated through this interaction, with B-cells receiving stimulation from T-cells
that attach themselves to similar antigen. Once a certain level of stimulation
is reached, B-cells begin to clone at a rate proportional to their affinity to the
antigen. These clones undergo a process of affinity maturation: this is achieved
by the mutation of the clones at a high rate (known as somatic hypermutation)
and selection of the strongest cells, some of which are retained as memory cells.
At the end of each iteration, a certain number of random individuals are inserted
into the population, to maintain an element of diversity.

Results reported for CLONALG (CLONal ALGorithm), which captures the
above process, seem to indicate that it performs well on function optimisation [4].
However, from the paper it was hard to extract an exact number of evaluations
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and solutions found, as these were not presented other than in graphical form.
Additionally, a detailed comparison between alternative techniques was never
undertaken, so it has proved difficult to fully assess the potential of the algorithm.

The work presented in this paper (undertaken independently of and contem-
poraneously to the above work) is a variation of clonal selection, which applies
a novel mutation operator and a different selection mechanism, which has been
found to greatly improve on optimisation performance on a number of functions.

4 The B-Cell Algorithm

This paper proposes a novel algorithm, called the B-cell algorithm (BCA), which
is also inspired by the clonal selection process. An important feature of the BCA
is its use of a unique mutation operator, known as contiguous somatic hyper-
mutation. Evidence for this in the immunological literature is sparse, but such
examples are [17], [15]. Here the authors argue that mutation occurs in clusters
of regions within cells: this is analogous to contiguous regions. However, in the
spirit of biologically inspired computing, it is not necessary for the underlying
biological theory to be proven, as computer scientists are interested in taking
inspiration from these theories to help improve on current solutions. As will be
shown the BCA is different to both CLONALG and HGAs in a number of ways.
The BCA and motivation for the algorithm will now be discussed.

The representation employed in the BCA is one of a N-dimensional vector
of 64-bit strings (as in the HGA above), known as Binary Shape Space within
AIS, which represents bit-encoded double-precision numbers. These vectors are
considered to be the B-cells within the system. Each B-cell within the population
are evaluated by the objective function, g(x). More formally, the B-cells are
defined as a vector v ∈ P of bit strings of length l = 64 where P is the population.
Empirical evidence indicates that an efficient population size for many functions
is low in contrast with genetic algorithms; a typical size would be �P ∈ [3..5].
The BCA can find solutions with higher P , but it converges more rapidly to the
solution (using less evaluations of g(x)) with a smaller value for P . Results were
obtained regarding this observation, but are not presented in this paper.

After evaluation by the objective function, a B-cell (v) is cloned to produce
a clonal pool, C. It should be noted that there exists a clonal pool C for each
B-cell within the population and also that all the adaptation takes place within
C. The size of C is typically the same size as the population P (but this does not
have to be the case). Therefore, if P was of size 4 then each B-cell would produce
4 clones. In order to maintain diversity within the search, one clone is selected
at random and each element in vector undergo a random change, subject to a
certain probability. This is akin to the metadynamics of the immune system,
a technique also employed in CLONALG, but here a separate random clone
is produced, rather than utilising an existing one. Each B-cell v′ ∈ C is then
subjected to a novel contiguous somatic hypermutation mechanism. The precise
form of this mutation operator will be explored in more detail below.
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The BCA uses a distance function as its stopping criterion for the empirical
results presented below: when it is within a certain prescribed distance from the
optimum, the algorithm is considered to have converged. The BCA is outlined
in figure 4.

1. Initialisation: create an initial random population of individuals P ;
2. Main loop: ∀v ∈ P :

a) Affinity Evaluation: evaluate g(v);
b) Clonal Selection and Expansion:

i. Clone each B-cell: clone v and place in clonal pool C;
ii. Metadynamics: randomly select a clone c ∈ C; randomise the vector;
iii. Contiguous mutation: ∀c ∈ C, apply the contiguous somatic hypermuta-

tion operator;
iv. Affinity Evaluation: evaluate each clone by applying g(v); if a clone has

higher affinity than its parent B-cell v, then v = c;
3. Cycle: repeat from step (2) until a certain stopping criterion is met.

Fig. 3. Outline of the B-Cell Algorithm

The unusual feature of the BCA is the form of the mutation operator. This
operates by subjecting contiguous regions of the vector to mutation. The biolog-
ical motivation for this is as follows: when mutation occurs on B-cell receptors,
it focuses on complementarity determining regions, which are small regions on
the receptor. These are sites that are primarily responsible for detecting and
binding to their targets. In essence a more focused search is undertaken. This is
in contrast to the method employed by CLONALG and the local search func-
tion h(x), whereby although multiple mutations take place, they are uniformly
distributed across the vector, rather than being targeted at a contiguous region
(see figure 4). Contrastingly, as also shown in figure 4, the contiguous mutation
operator, rather than selecting multiple random sites for mutation, a random
site (or hotspot) is chosen within the vector, along with a random length; the
vector is then subjected to mutation from the hotspot onwards, until the length
of the contiguous region has been reached.

5 Results

Both the HGA and BCA were tested on a number of functions ranging in com-
plexity from one to twenty dimensions, taken from [1] and [7]. It was not possi-
ble to obtain results for all functions for the CLONALG, but results for certain
functions were taken from [4] for comparative purposes. In total twelve functions
were tested. The parameters for the HGA were derived according to standard
heuristics, with a crossover rate of 0.6 and a mutation rate of 0.001: the local
search function h(x) incorporated a mutation rate of δ ∈ {2, 3, 4, 5} per vector.
The BCA had a clonal pool size equal to the population size. It should be noted
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h2

h1 h3

length

hotspot

Fig. 4. Multiple-point and contiguous mutation

that all vectors consisted of bit strings of length 64 (i.e double-precision floating
point numbers) and no Gray encoding was used on either the HGA or BCA.

Each experiment was run for 50 iterations and the results averaged over the
runs. The functions to be optimised are given in table 1. Some of the functions
may seem quite simple e.g. f1, f9 with one and two dimensions respectively.
However, f12 is of twenty dimensions. An interesting characteristic of function
f11 is the presence of a second best minimum away from the global minimum.
Function f12 has a product term introducing an interdependency between the
variables; this is intended to disrupt optimisation techniques that work on one
function variable at a time [7].

5.1 Overview of Results

When monitoring the performance of the algorithms, two measures were em-
ployed: these were the quality of the solution found, and the number of eval-
uations taken to find the solution. The number of evaluations of the objective
function is a measure adopted in many papers for assessing the performance
of an algorithm; in case the algorithm does not converge on the optimum, the
distance measure can give an estimate of how proximity to the solution. Table
2 provides a set of results averaged over 50 runs for the optimised functions.
It it noteworthy that the results presented are for a population size of only 4
individuals, in order to allow for direct comparisons to be made; it should also
be noted that results were obtained for population sizes ranging from 4 to 40 for
both algorithms. It was found that the performance difference between the two
algorithms was similar as the population size was increased. As the population
sizes increased for both algorithms, the number of evaluations increased, with
occasional effect on the quality of the result obtained (in terms of quality of solu-
tion found). As can be seen from table 2 both the hybrid GA and BCA perform
well in finding the optimal solutions for the majority of functions. Notable ex-
ceptions are f7 and f9 where neither algorithm found a minimal value. In terms
of the metric for quality of solutions then there seems little to distinguish the
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Table 1. Functions to be Optimised

Function ID Function Parameters

f1 f(x) = 2(x − 0.75)2 + sin(5πx − 0.4π) 0 ≤ x ≤ 1
- 0.125

f2 f(x, y) = (4 − 2.1x2 + x4

3 )x2+ −3 ≤ x ≤ 3 and −2 ≤ x ≤ 2
(Camelback) xy + (−4 + 4y2)y2

f3 f(x) = −∑5
j=1[j sin((j + 1)x + j)] −10 ≤ x ≤ 10

f4 f(x, y) = a(y − bx2 + cx − d)2+ a = 1, b = 5.1
4π2 , c = 5

π
,

(Branin) h(1 − f) cos(x) + h d = 6, f = 1
8π

, h = 10
−5 ≤ x ≤ 10, 0 ≤ y ≤ 15
0 ≤ y ≤ 15

f5 f(x, y) =
∑5

j=1 j cos[(j + 1)x + j] −10 ≤ x ≤ 10 and −10 ≤ y ≤ 10
(Pshubert 1) and β = 0.5

f6
∑5

j=1 j cos[(j + 1)y + j] as above but β = 1
(Pshubert 2) +β[(x + 1.4513)2 + (y + 0.80032)2

f7 f(x, y) = x sin(4πx) − y sin(4πyπ) + 1 −10 ≤ x ≤ 10 and −10 ≤ y ≤ 10

f8 y = sin6(5πx) −10 ≤ x ≤ 10 and −10 ≤ y ≤ 10

f9 f(x, y) = x4

4 − x2

2 + x
10 + y2

2 −10 ≤ x ≤ 10 and −10 ≤ y ≤ 10
(quartic)

f10 f(x, y) =
∑5

j=1 j cos[(j + 1)x + j] −10 ≤ x ≤ 10 and −10 ≤ y ≤ 10
(Shubert)

∑5
j=1 j cos[(j + 1)y + j]

f11 f(−→x ) = 418.9829n− −512.03 ≤ xi ≤ 511.97, n = 3.

(Schwefel)
∑n

i=1 xi sin(
√

|xi|)

f12 f(−→x ) = 1 +
∑n

i=1
x2

i
4000− n = 20 and −600 ≤ xi ≤ 600

(Griewangk)
∏

cos( xi√
i
)

two algorithms. This at least confirms that the BCA is performing sensibly on
the functions. However, when the number of evaluations are taken into account,
then a different picture emerges. These are highlighted in the table 2 and are
presented as a compression rate, so the lower the rate, the fewer the number of
evaluations the BCA algorithm performs when compared to the HGA. As can
be seen from the table, for the majority of the functions reported, the BCA per-
formed significantly fewer evaluations on the objective function than the HGA,
but without compromising quality of the solution.
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Table 2. Averaged results over 50 runs, for a population size of 4. Standard deviations
are given where it was non-zero

f(x) Min. Minimum Found No. Eval. of g(x) Compression Rate
BCA HGA BCA HGA

f1 -1.12 -1.08(±.49) -1.12 1452 6801 21.35
f2 -1.03 -1.03 -0.99(±.29) 3016 12658 23.81
f3 -12.03 -12.03 -12.03 1219 3709 32.87
f4 0.40 0.40 0.40 4921 30583 16.09
f5 -186.73 -186.73 -186.73 46433 78490 59.16
f6 -186.73 -186.73 -186.73 42636 76358 55.84
f7 1 0.92 0.92(±.03) 333 870 38.28
f8 1 1.00 1.00 132 484 27.27
f9 -0.35 -0.91 -0.99(±.29) 2862 15894 18.01
f10 -186.73 -186.73 -186 14654 52581 27.87
f11 0 0.04 0.04 67483 131147 51.46
f12 1 1 1 44093 80062 55.07

The difference between the number of evaluations is striking. The BCA takes
fewer evaluations to converge on the optimum in every case, as the percentage
difference in number of evaluations illustrates. On average, it would appear that
the BCA performs at least half as many evaluations as the HGA. Further exper-
iments need to be done in comparison with other techniques, in order to further
gauge evaluation performance. This is outside the scope of this paper, but is
earmarked for future research.

Clearly, the BCA is not performing like the HGA. When compared to the
CLONALG results, it should be noted that CLONALG also found optimal so-
lutions for f7 but the number of evaluations was not available.

5.2 Why Does the BCA Have Fewer Evaluations?

The question of why the BCA converges on a solution with relatively few evalu-
ations of the objective function is one which has not yet been fully explored as
part of this work, but is clearly a major avenue for investigation. It is possible
that the performance of this algorithm is problem dependant (as is the case with
GA’s) and that the mutation operator is specifically well suited to the nature of
the data representation.

It is possible that the responsibility for rapid convergence lies with the con-
tiguous somatic hypermutation operator. Consider a fitness landscape with a
number of local optima and one global optimum. Now consider a B-cell that
is trapped on a local optimum; a purely local search mechanism would be un-
able to extricate the B-cell, since that would mean first moving to a point of
lower fitness. If the mutation regime were limited to a small number of point
mutations, it would only be able to explore its immediate neighbourhood in the
fitness landscape, and so it is unlikely that it would be able to escape the local
optimum.
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However, the random length utilised by the contiguous somatic hypermuta-
tion operator means that it is possible for the B-cell to explore a much wider
area of the fitness landscape than just its immediate neighbourhood. The B-cell
may be able to jump off of a local optimum and onto the slopes of the global op-
timum. In much the same way, the contiguous somatic hypermutation operator
can also function in a more narrow sense, analogous to local search, exploring
local points in the fitness space, depending on the value of length.

Despite their intuitive appeal, these are far from formal arguments; more
work will need to be undertaken to verify this hypothesis.

5.3 Differences between HGA, BCA, and CLONALG

It is important to identify, at least at a conceptual level, differences in these
approaches. It should be noted that, although the BCA is clearly an evolution-
ary algorithm, the authors do not consider it to be a genetic or hybrid genetic
algorithm: a canonical GA employs a deliberately low mutation rate, and em-
phasises crossover as the primary operator. Similarly, the authors do not con-
sider the BCA to be a memetic algorithm, despite superficial similarities. It is
noted that a more rigorous analysis of differences is required, but that has been
earmarked for future research. It is the aim of this section to merely highlight
conceptual differences for the reader. Table 3 summarises the main similarities
and differences. However, it is worth expanding on these slightly.

Table 3. Summarising the main similarities and differences between BCA, HGA and
CLONALG

Algorithm Diversity Selection Population

BCA Somatic Contiguous Replacement Introduction of random
mutation B-cell. Fixed size.

HGA Point mutation, Replacement Fixed size.
crossover and
local search

CLONALG Affinity proportional Replacement by Introduction of random
somatic mutation n fittest clones cells, flexible population

fixed size memory population

Two major differences are the mutation mechanisms and the frequency of
mutation that is employed. Both BCA and CLONALG have high levels of mu-
tation, when compared to the HGA. However, the BCA mutates a contiguous
region of the vector, whereas the other two select multiple random points in the
vector space. As hypothesised above, this may give the BCA a more focused
search, which helps the algorithm to converge with fewer evaluations. It is also
noteworthy that neither AIS algorithms employ crossover, as this does not occur
within the immune system.
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The replacement of individuals within the population also varies between al-
gorithms. Within both the HGA and BCA, when a new clone has been evaluated
and is found to be better than an existing member of the population, the exist-
ing member is simply replaced with the new clone. Alternatively, in CLONALG
a number n of the memory set are replaced, rather than just one. However, it
should be noted that within the HGA the concept of a clone does not exist,
as crossover rather than cloning is employed. This means that within the BCA
there is a certain amount of enhanced parallelism, since copies of the cloned
B-cell have a chance to explore the immediate neighbourhood within the vector
space, by providing extra coverage of the neighbourhood. In contrast, it is again
hypothesised that the HGA loses this extra parallelism through the crossover
mechanism.

6 Conclusions and Future Work

This work has presented an algorithm inspired by how the immune system cre-
ates and matures B-cells, called the B-cell algorithm. A striking feature of the
B-cell algorithm is its performance in comparison to a hybrid genetic algorithm.
A unique aspect of the BCA is its use of a contiguous hypermutation operator,
which, it has been hypothesised, is responsible for its enhanced performance. A
first test would be to use this operator in a standard GA to assess the perfor-
mance gain (or not) that the operator brings. This will allow for useful conclu-
sions to be drawn about the nature of the mutation operator. A second useful
direction for future work would be to further test the BCA against other algo-
rithms and widen the scope and type of functions tested; another would be to
test its inherent ability to optimise multimodal functions. It has been noted that
CLONALG is suitable for multimodal optimisation [4] as an inherent property of
the algorithm; it would be worthwhile evaluating if this is the case for the BCA.
Perhaps the most illuminating piece of work would be to test the hypothesis
regarding the effect of the contiguous hypermutation operator on convergence of
the algorithm.
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