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Abstract. Associative memories based on DNA-affinity have been proposed
[2]. Here, the performance, efficiency, reliability of DNA-based memories is
quantified through simulations in silico. Retrievals occur reliably (98%) within
very short times (milliseconds) despite the randomness of the reactions and re-
gardless of the number of queries. The capacity of these memories is also ex-
plored in practice and compared with previous theoretical estimates. Advantages
of implementations of the same type of memory in special purpose chips in
silico is proposed and discussed.

1 Introduction

DNA olignucleotides have demonstrated to be a feasible and useful medium for com-
puting applications since Adleman’s original work [1], which created a field now
known as biomolecular computing (BMC). Potential applications range from increas-
ing speed through massively parallel computations [13], to new manufacturing tech-
niques in nanotechnology [18], and to the creation of memories that can store very
large amounts of data and fit into minuscule spaces [2], [15]. The apparent enormous
capacity of DNA (over million fold compared to conventional electronic media) and
the enormous advances in recombinant biotechnology to manipulate DNA in vitro in
the last 20 years make this approach potentially attractive and promising. Despite
much work in the field, however, difficulties still abound in bringing these applica-
tions to fruition due to inherent difficulties in orchestrating a large number of individ-
ual molecules to perform a variety of functions in the environment of virtual test
tubes, where the complex machinery of the living cell is no longer present to organize
and control the numerous errors pulling computations by molecular populations away
from their intended targets.

In this paper, we initiate a quantitative study of the potential, limitations, and actual
capacity of memories based or inspired by DNA. The idea of using DNA to create
large associative memories goes back to Baum [2], where he proposed to use DNA
recombination as the basic mechanism for content-addressable storage of information
so that retrieval could be accomplished using the basic mechanism of DNA hybridiza-
tion affinity. Content is to be encoded in single stranded molecules in solution (or
their complements.) Queries can be obtained by dropping in the tube a DNA primer
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Watson-Crick complement of the (partial) information known about a particular rec-
ord using the same coding scheme as in the original memory, appropriately marked
(e.g., using magnetic beads, or fluorescent tags). Retrieval is completed by extension
and/or retrieval (e.g., by sequencing) of any resulting double strands after appropriate
reaction times have been allowed for hybridization to take effect. As pointed out by
Baum [2], and later Reif & LaBean [15], many questions need to be addressed before
an associative memory based on this idea can be regarded as feasible, let alone actu-
ally built.

Further methods were proposed in [15] for input/output from/to databases repre-
sented in wet DNA (such as genomic information obtained from DNA-chip optical
readouts, or synthesis of strands based on such output) and suggested methods to im-
prove the capabilities and performance of the queries of such DNA-based memories.
The proposed hybrid methods, however, require major pre-processing of the entire
database contents (through clustering and vector quantization) and post-processing to
complete the retrieval by the DNA memory (based on the identification of the clusters
centers.) This is a limitation when the presumed database approaches the expected
sizes to be an interesting challenge to conventional databases, or when the data already
exists in wet DNA, because of the prohibitive (and sometimes even impossible) cost
of the transduction process to and from electronics. Inherent issues in the retrieval per
se, such as the reliability of the retrieval in-vitro and the appropriate concentrations for
optimal retrieval times and error rates remain unclear.

We present an assessment of the efficiency and reliability of queries in DNA-based
memories in Section 3, after a description of the experimental design and the data
collected for this purpose in Section 2. In Section 3, we also present very preliminary
estimates of their capacity. Finally, section 4 summarizes the results and discusses the
possibility of building analogous memories in silico inspired by the original ideas in
vitro, as suggested by the experiments reported here. A preliminary analysis of some
of these results has been presented in [7], but here we present further results and a
more complete analysis.

2 Experimental Design

The experimental data used in this paper has been obtained by simulations in the vir-
tual test tube of Garzon et al [9]. Recently, driven by efficiency and reliability consid-
erations, the ideas of BMC have been implemented in silico by using computational
analogs of DNA and RNA molecules [8]. Recent results show that these protocols
produce results that closely resemble, and in many cases are indistinguishable from,
the protocols they simulate in wet tubes [7]. For example, Adleman’s experiment has
been experimentally reproduced and scaled in virtual test tubes with random graphs of
up to 15 vertices while producing results correct with no probability of a false positive
error and a probability of a false negative of at most 0.4%. Virtual test tubes have also
matched very well the results obtained in vitro by more elaborate and newer protocols,
such as the selection protocol for DNA library design of Deaton et Al. [4]. Therefore,
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there is good evidence that virtual test tubes provide a reasonable and reliable estimate
of the events in wet tubes (see [7] for a more detailed discussion.)

Virtual test tubes thus can serve as a reasonable pre-requisite methodology to esti-
mate the performance and experimental validation prior to construction of such a
memory, a validation step that is now standard in the design of conventional solid-
state memories. Moreover, as will be seen below in the discussion of the results, vir-
tual test tubes offer a much better insight into the nature of the reaction kinetics than
corresponding experiments in vitro, which, when possible (such as Cot curves to
measure the diversity of a DNA pool), incur much larger cost and effort.

2.1 Virtual Test Tubes

Our experimental runs were implemented using the virtual test tube Edna of Garzon et
al. [7],[8].[9] that simulates BMC protocols in silico. Edna provides an environment
where DNA analogs can be manipulated much more efficiently, can be programmed
and controlled much more easily, at much lower costs, and produce comparable results
to those obtained in a real test tube [7]. Users simply need to create object-oriented
programming classes (in C++) specifying the objects to be used and their interactions.
The basic design of the entities that were put in Edna represent each nucleotide within
the DNA as a single character and the entire strand of DNA as a string, which may
contain single- or double-stranded sections, bulges, and loops or higher secondary
structures. An unhybridized strand represents a strand of DNA from the 5’-end to the
3’-end. These strands encode library records in the database, or queries containing
partial information that identify the records to be retrieved.

The interactions among objects in Edna represent chemical reactions by hybridiza-
tion and ligation resulting in new objects such as dimers, duplexes, double strands, or
more complicated complexes. They can result in one or both entities being destroyed
and a new entity possibly being created. In our case, we wanted to allow the entities
that matched to hybridize to each other to effect a retrieval, per Baum’s design 2].
Edna simulates the reactions in successive iterations. One iteration moves the objects
randomly in the tube’s container (the RAM really) and updates their status according
to the specified interactions with neighbor objects, based on proximity parameters that
can be varied within the interactions. The hybridization reactions between strands
were performed according to the h-measure [8] of hybridization likelihood. Hybridi-
zation was allowed if the h-measure was under a given threshold, which is the number
of mismatches allowed (including frame-shifts) and so roughly codes for stringency in
the reaction conditions. A threshold of zero enforces perfect matches in retrieval,
whereas a larger value permits more flexible and associative retrieval. These require-
ments essentially ensured good enough matches along the sections of the DNA that
were relevant for the associative recall.

The efficiency of the test tube protocols (in our case, retrievals) can be measured by
counting the number of iterations necessary to complete the reactions or achieve the
desired objective; alternatively, one can measure the wall clock time. The number of
iterations taken until a match is found has the advantage of being indifferent to the
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speed of the machine(s) running the experiment. This intrinsic measure was used be-
cause one iteration is representative of a unit of real-time for in vitro experiments. The
relationship between simulation results in simulation and equivalent results in vitro
has been discussed in [7]. Results of the experiments in silico can be used to yield
realistic estimates of those in vitro. Essentially, one iteration of the test tube corre-
sponds to the reaction time of one hybridization in the wet tube, which is of the order
of one millisecond [17]. However, the number of iterations cannot be a complete pic-
ture because iterations will last longer as more entities are put in the test tube. For this
reason, processor time (wall clock) was also measured. The wall clock time depends
on the speed and power of the machine(s) running Edna and ranged anywhere from
seconds to days for the single processors and 16 PC cluster that were used to run the
experiments used below.

2.2 Libraries and Queries

We assume we have at our disposal a library of non-cross hybridizing (nxh) strands
representing the records in the databases. The production of such large libraries has
been addressed elsewhere [4], [10]. Well-chosen DNA word designs that will make
this perfectly possible in large numbers of DNA strands directly, even in real test
tubes, will likely be available within a short time. The exact size of such a library will
be discussed below. The nxh property of the library will also ensure that retrievals will
be essentially noise-free (no false positives), module the flexibility built into the re-
trieval parameters (here h-distance). We will also assume that a record may also con-
tain an additional segment (perhaps double-stranded [2]) encoding supplementary
information beyond the label or segment actively used for associative recall, although
this is immaterial for assumptions and results in this paper. The library is assumed to
reside in the test tube, where querying takes place.

Queries are strings objects encoding, and complementary of, the available informa-
tion to be searched for. The selection operation uses probes to mark strands by hy-
bridizing part of the probe with part of the “probed” strand. The number of unique
strands available to be probed is, in principle, the entire library, although we consider
below more selective retrieval modes based on temperature gradients. Strictly speak-
ing, the probe consists of two logical sections: the guery and tail. The tail is the por-
tion of the strand that is used with in vitro experiments to physically retrieve the
marked DNA from the test tube (e.g., biotin-streptavidin-coated beads or fluorescent
tags [16]). The query is the portion of the strand that is expected to hybridize with
strands from the library to form a double-stranded entity. We will only be concerned
with the latter below, as the former becomes important only at the implementation
stage, or just be identical to the duplex formed during retrieval.

When a probe comes close enough to a library or probe strand in the tube so that
any hybridization between the two strands is possible, an encounter (which triggers a
check for hybridization) is said to have occurred. The number of encounters can vary
greatly depending directly on the concentration of probes and library strands. It ap-
pears that higher concentration reduce retrieval time, but this is only true to a point
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since results below show that too much concentration will interfere with the retrieval
process. In other words, a large number of encounters may cause unnecessary hybridi-
zation attempts that will slow down the simulation. Further, too many neighbor
strands may hinder the movement of the probe strands in search of their match. Prob-
ing is considered complete when probe copies have formed enough retrieval duplexes
with library strands that should be retrieved (perhaps none) according to stringency of
the retrieval (here the h-distance threshold.) In single probes with high stringency
(perfect matches), probing can be halted when one successful hybridization occurs.
Lesser stringency and multiple simultaneous probes require longer times to complete
the probe. The question arises how long is long enough to complete the probes with
high reliability.

2.3 Test Libraries and Experimental Conditions

The experiments used mostly a library consisting of the full set of 512 non-
complementary 5-mer strands, although other libraries obtained through the software
package developed based on the thermodynamic model of Deaton et Al. [5] were also
tried with consistent results. This is a desirable situation to benchmark retrieval per-
formance since the library is saturated (maximum size) and retrieval times would be
worst-case. The probes were chosen to be random probes of 5-mers. The stringency
was highest (h-distance 0), so exact matches were required. The experiment began by
placing variable concentrations (number of copies) of the library and the probes into
the tube of constant size. Once placed in the tube, the simulation begins. It stops when
the first hybridization is detected. For the purposes of these experiments, there existed
no error margin thus preventing close matches from hybridizing. Introduction of more
flexible thresholds does not affect the results of the experiments.

In the first batch of experiments, we collected data to quantify the efficiency of the
retrieval process (time, number of encounters, and attempted hybridizations) with
single queries between related strands and its variance in hybridization attempts until
successful hybridization. Three successive batches of experiments were designed to
determine the optimal concentrations with which the retrieval was both successful and
efficient, as well as to determine the effect on retrieval times of multiple probes in a
single query. The experiments were performed between 5 and 100 times each and the
results averaged. The complexity and variety of experiments has limited the quantity
of runs possible for each experiment. Over a total of over 2000 experiments were run
continuously over the course of many weeks.

3 Analysis of Results

Below are the results of the experiments, with some analysis of the data gathered.
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3.1 Retrieval Efficiency

Figure 1 shows the results of the first experiment at various concentrations averaged
over five runs. The most hybridization attempts occurred when the concentration of
probes is between 50-60 copies and the concentration of library strands was between
20-30 copies. Figure 2 represents the variability (as measured by the standard devia-
tion) of the experimental data. Although, there exists an abnormally high variance in
some deviations in the population, most data points exist with deviations less than
5000. This high variance can be partially explained by the probabilistic chance of any
two matching strands encountering each other by following a random walk. Interest-
ingly enough, the range of 50-60 probe copies and 20-30 library copies exhibits mini-
mum deviations.

Avg. Hybridization Attempts for S-mer library

Hybridization attempts

Concentration (copies of 5-mers)
Library of 512 strands

Fig. 1. Retrieval difficulty (hybridization attempts) based on concentration.

Deviation of | ion Attempts for S-mer library

Hykridization attempts

Cencentration (coples of S-mars) P s
Library of §12 strands

Fig. 2. Variability in retrieval difficulty (hybridization attempts) based on concentration.
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3.2 Optimal Concentrations

Figure 3 shows the average retrieval times as measured in tube iterations. The number
of iterations decreases as the number of probes and library strands increase, to a point.
One might think at first that the highest available probe and library concentration is
desirable. However, Fig. 1 indicates a diminishing return in that the number of hy-
bridization attempts increases as the probe and library concentration increase. In order
for the experiments in silico to be representative of the wet test tube experiments, a
compromise must be made. Therefore, if the ranges of concentrations determined
from Fig. 1 are used, the number of tube iterations remains under 200. Fig. 4 shows
only minimum deviations once the optimal concentration has been achieved. The
larger deviations at the lower concentrations can be accounted for by the highly ran-
domized nature of the test tube simulation. These results on optimal concentration are
consistent and further supported by comparison with the results in Fig. 1.

Avg. Retrieval Time for S-mer library

Tube Iterations

Concentration (coples of 5-mers)
Library of 512 strands

Fig. 3. Retrieval times (number of iterations) based on concentration.

As a comparison, in a second batch of experiments with a smaller (much sparser)
library of 64 32-mers obtained by a genetic algorithm [9], the same dependent meas-
ures were tested. The results (averaged over 100 runs) are similar, but are displayed in
a different form below. In Figure 5, the retrieval times ranged from nearly O through
5,000 iterations. For low concentrations, retrieval times were very large and exhibited
great variability. As the concentration of probe strands exceeds a threshold of about
10, the retrieval times drop under 100 iterations, assuming a library strand concentra-
tion of about 10 strands.

Finally, Figure 6 shows that the retrieval time increases only logarithmically with
the number of multiple queries and tends to level off in the range within which probes
don’t interfere with one another.
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Standard Deviation of Retrieval Time for S-mer librany

1800 00

Tube Iterations
B

Concentratien (coples of S-mers) < HD
Library of §12 strands

Fig. 4. Variability in retrieval times (number of iterations) based on concentration.

Tue side = 10.0, Radius = 0.1 Tube side = 100, Radug = 1.1

h H i K

foverage Fetrieve Time in Mumber of Herations

Standard deviation of Average Retrieve Time
in Nugnber of llerations,

Library Gonceniration Corstart Ligrary CancentrafonCarssant
Prabe Concentration'Constant Pmibe Concanivation/Constant

Fig. 5. Retrieval times and optimal concentration on sparser library.

In summary, these results permit a preliminary estimate of optimal and retrieval times
for queries in DNA associative memories. For a library of size N, a good concentra-
tion of library for optimal retrieval time appears to be in the order of O(logN). Probe
strands require the same order, although probably a smaller number will suffice. The
variability in the retrieval time also decreases for optimal concentrations. Although not
reported here in detail due to space constraints, similar phenomena were observed for
multiple probes. We surmise that this hold true up to O(logN) simultaneous probes,
past which probes begin to interfere with one another causing a substantial increase in
retrieval time. Based on benchmarks obtained by comparing simulations in Edna with
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Fig. 6. Retrieval times (number of iterations) based on multiple simultaneous of queries.

wet tube experiments [7], we can estimate the actual retrieval time itself in all these
events to be in the order of 1/10 of a second for libraries in the range of 1 to 100 mil-
lions strands in a wet tube.

It is worth noticing that similar results may be expected for memory updates.
Adding a record is straightforward in DNA-based memories (assuming that the new
record is noncrosshybridizing with the current memory), one can just drop it in the
solution. Deleting a record requires making sure that all copies of the records are re-
trieved (full stringency for perfect recall) and expunged, which reduces deletion to the
problem above. Additional experiments were performed that verified this conclusion.
The problem of adding new crosshybridizing records is of a different nature and was
not addressed in this project.

3.3 DNA-Based Memory Capacity

An issue of paramount importance is the capacity of the memories considered in this
paper. Conventional memories and even memories developed with other technologies
have impressive sizes despite apparent shortcomings such as address-based indexing
and sequential search retrievals. DNA-based memories need to offer a definitive ad-
vantage to make them competitive. Candidates are massive size, associative retrieval,
and straightforward implementation by recombinant biotechnology. We address below
only the first aspect.

Baum [2] claimed that it seemed DNA-based memories could be made with a ca-
pacity larger than the brain, but warned that preventing undesirable cross-
hybridization may reduce the potential capacity of 4" strands for a library made of n-
mers. Later work on error-prevention has confirmed that the reduction will be orders
of magnitude smaller [6]. Based on combinatorial constraints, [14] combinatorially
obtained some theoretical lower bounds and upper bounds of the number of equi-
length DNA strands. However, from the practical point of view, the question still
remains of determining the size of the largest memories based on oligonucleotides in
effective use (20 to 150-mers).



388 M.H. Garzon, A. Neel, and H. Chen

A preliminary estimation of the runs has been made in several ways. First, a greedy
search of small DNA spaces (up to 9-mers) in [10] by exhaustive searches averaged a
number of 100 code words or less at a minimum h-distance apart of 4 or more, in a
space of at least 4" strands, regardless of the random order in which they the entire
spaces were searched. Using the more realistic (but still approximate) thermodynamic
model of Deaton et Al. [5], similar greedy searches turned up libraries of about 1,400
10-mers with nonnegative pairwise Gibbs energies (given by the model.) An in vitro
selection protocol proposed by Deaton et Al. [4] has been tested experimentally and is
expected to produce large libraries. The difficulty is that quantifying the size of the
libraries obtained by the selection protocol is yet an unresolved problem given the
expected size for 20-mers. In a separate experiment simulating this selection protocol,
Edna has produced libraries of about 100 to 150 n-mers (n=10, 11, 12) starting with a
full size DNA space of all n-mers (crosshybridizying) as the seed populations. Further
several simulations of the selection protocol with random seeds of 1024 20-mers as
initial population have consistently produced libraries of no more than 150 20-mers. A
linear extrapolation to the size of the entire population is too risky because the greedy
searches show that sphere packing allows high density in the beginning, but tends to
add more strands very sparsely toward the end of the process. The true growth rate of
the library size as a function of strand size »n remains a truly intriguing question.

4 Summary and Conclusions

The reliability and efficiency of DNA-based associative memories has been explored
quantitatively through simulation of reactions in silico on a virtual test tube. They
show that there the region of optimal concentrations for library and probe strands to
minimize retrieval time and avoid excessive concentrations (which tend to lengthen
retrieval times) is about O(logN), where N is the size of the library. Further the re-
trieval time is highly dependent on reactions conditions and the probe, but tends to
stabilize at optimal concentrations. Furthermore, these results remain essentially un-
changed for simultaneous multiple queries if they remain small compared to the li-
brary size (within O(log N).) Previous benchmarks of the virtual tube provide a good
level of confidence that these results extrapolate well to wet tubes with real DNA. The
retrieval times in that case can be estimated in the order of 1/10 of a second. The im-
portant question of how the memory capacity grows as a function of strand size is
certainly sub-exponential, but remains a truly intriguing open question.

An interesting possibility is suggested by the results presented here. The experi-
ments were run in simulation. It is thus conceivable that conventional memories could
be designed in hardware using special-purpose chips of the software simulations. The
chips would run according to the parallelism inherent in VLSI circuits. One iteration
could be run in nanoseconds with current technology. Therefore, once can obtain the
advantages of DNA-based associative recall at varying threshold of stringency in
silico, while retaining the speed, implementation, and manufacturing facilities of
solid-state memories. A further exploration of this idea will be fleshed out elsewhere.
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