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Abstract. This paper introduces a novel genetic algorithm strategy
based on the reuse of chromosomes from previous generations in the
creation of offspring individuals. A number of chromosomes of above-
average quality, that are not utilized for recombination in the current
generation, are inserted into a library called the chromosome library.
The main motivation behind the chromosome reuse strategy is to trace
some of the untested search directions in the recombination of potentially
promising solutions. In the recombination process, chromosomes of cur-
rent population are combined with the ones in the chromosome library
to form a population from which offspring individuals are to be created.
Chromosome library is partially updated at the end of each generation
and its size is limited by a maximum value. The proposed algorithm is
applied to the solution of hard numerical and combinatorial optimiza-
tion problems. It outperforms the conventional genetic algorithms in all
trials.

1 Introduction

Genetic algorithms (GA’s) are biologically inspired search procedures that have
been successfully used for the solution of hard numerical and combinatorial op-
timization problems. Since their introduction by John Holland in 1975, there
has been a great deal on the derivation of various algorithmic alternatives of
the standard implementation toward a faster and better localization of optimal
solutions. In all these efforts, mechanisms of natural evolution developed over
millions of years have became the main source of inspiration. The power and
success of GA’s is mainly achieved by the diversity of individuals of a popula-
tion which evolve following the Darwinian principle of ”survival of the fittest”.
In the standard implementation of GA’s, the diversity of individuals is achieved
using the genetic operators mutation and crossover which facilitate the search
for high quality solutions without being trapped into local optimal points [1],
[2], [3], [4].

In order to determine the most efficient ways of using GA’s, many researchers
have carried out extensive studies to understand several aspects such as the role
and types of selection mechanism, types of chromosome representations, types
and application strategies of the genetic operators, memory-based approaches,
parallel implementations, and hybrid algorithms. In particular, several studies
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were made concerning the development of problem-specific hybrids combining
genetic algorithms with other intelligent search methods, and it has been demon-
strated by thousands of applications that these approaches provide better results
than the conventional genetic algorithms on very difficult problems [5], [6], [7],
[8].

Among many different improvement efforts, memory-based approaches have
also been studied and successfully applied for the solution difficult problems.
Memory-based approaches aim to improve the learning performance of GAs by
reintroducing chromosomes of previous generations into the current population,
and their fundamental inspiration comes from redundancy within genetic mate-
rial in natural biology and intelligent search methods which use the experience-
based knowledge developed during the search to decide on the new search direc-
tions. In memory-based implementations, information stored within a memory
is used to adapt the GAs behavior either in problematic cases where the solution
quality is not improved over a number of iterations or to provide further direc-
tions of exploration and exploitation. Memory in GAs can be provided internally
(within the population) or externally (outside the population) [9].

The most common approaches using internal memory are polyploidy struc-
tures and polygenic inheritance. Polyploidy structures in combination with dom-
inance mechanisms use redundancy in genetic material by having more than one
copy of each gene. When a chromosome is decoded to determine the correspond-
ing phenotype, the dominant copy is chosen. By switching between copies of
genes, the GA can adapt faster to changing environments and recessive genes
are used to provide information about fitness values from previous generations
[10], [11], [12]. Polygenic inheritance is based on the idea that a trait can depend
on more than one gene or gene pair. In this case, the more gene pairs involved
in the calculation of a trait, the more difficult it is to distinguish between vari-
ous phenotypes. This is certainly a situation which smooths the evolution in a
variable environment [13], [14].

External memory implementations store specific information and reintroduce
that information into the population at a later moment. In most cases, this
means that individuals from memory are put into the initial population of a
new or restarted GA [15]. Case-based memory approaches, which is actually a
long term elitism, is the most typical form of external memory implemented in
practice. In general, there are two kinds of case-based memory implementations:
in one kind, case-based memory is used to re-seed the population with the best
individuals from previous generations when a change in the variable problem
domain takes place [15]. A different kind of case-based memory stores both
problems and solutions [16], [17]. When GA has to solve a problem similar to
problems in its case-based memory, it uses the stored solutions to seed the initial
population. Case-based memory aims to increase the diversity by reintroducing
individuals from previous generations and achieves exploitation by reintroducing
individuals from case-based memory when a restart from a good initial solution
is required.
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This paper introduces a novel external memory-based genetic algorithms
strategy based on the reuse of chromosomes from previous generations in the
creation of offspring individuals. At the end of each generation, a number of po-
tentially promising chromosomes, based on their fitness values, are inserted into
a library, called the chromosome library. Basically, starting from any point in
the solution space, it is possible to form a path to an optimal solution over many
different alternatives. Consequently, chromosome reuse aims to trace untested
possibilities in the recombination of potentially promising solutions. Those indi-
viduals having a fitness value above a threshold, that are not used in the current
recombination process, are selected for insertion into the chromosome library.
During the recombination process, chromosomes of current population are com-
bined with the ones in the chromosome library to form a population from which
offspring individuals are to be created. The size of the chromosome library is
limited by a maximum value and in case of excessive insertions, only the best
individuals within the limits are accepted. The proposed algorithm is applied to
the solution of hard numerical and combinatorial optimization problems. The
obtained results demonstrate the superiority of the proposed approach over the
conventional genetic algorithms.

The idea of reusing some chromosomes of previous generations, in the forma-
tion of offspring individuals, arises from a well-known fact in intelligent search
algorithms: a search process has to make frequent backtracks or restarts to find
a path to an optimal solution [18], [19]. This is because, an alternative search
direction that may not be seen attractive at some point, due to more promising
alternatives or due to many alternatives, may provide a link to an optimal solu-
tion with smaller number of computational steps. This idea is illustrated with a
simple example as follows:

Assume that we want to maximize the objective function f(x) = x2, x ∈
[0, 1], using 8-bit binary encoding. Certainly, f(x) takes its maximum value for
an individual p∗ = 11111111. Now, consider the following individuals p1 =
00011111, p2 = 11100000, and p3 = 10000001. Due to fitness-based selection
procedures, it is obvious that p2 and p3 will produce much more offspring than
p1 for the next generation. In addition to that, the number of recombinations
between p2 and p3 will be greater than the ones between p1 and p2, and between
p1 and p3. However, as can be seen from the structures of p1 and p2, a one-point
crossover between the two from the position j = 4 will produce the optimal
solution. Hence, it is worth to store chromosomes like p1 for a while to give them a
chance for recombination with high quality individuals to provide a shorter path
to an optimal solution. It is also important to note that, the individuals like p1
which can be accessed from the chromosome library are computationally free
because their structure and fitness values are known from previous generations.

As explained with the above particular examples, in the recombination of
two potential solutions, there are lots of possibilities and only a few of them are
randomly tried due to restrictions of fitness-based selection procedures and the
population size. In fact, for a binary encoding of length l, two individuals can
be recombined in (l − 1) different ways using the 1-point crossover. The number
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of offspring that can be produced with 2-point crossover is l(l − 1), whereas this
number using the uniform crossover is 2k, k ≤ l, where k is the number of posi-
tions where the two parents are different. Obviously, since the individuals of the
current generation are completely replaced by their offspring, there is no way
to retry another recombination operation with these individuals unless they are
reproduced in future generations. In theoretical models of genetic algorithms,
the branching process in genetic evolutionary search is explained by the schema
theorem which is based on hyperplane sampling where the convergence process
is modelled by increasingly more frequent sampling from high fitness individuals
by crossover and mutation acting as a background operator to prevent prema-
ture convergence. In this respect, the use of the chromosome library will help
the search process by providing additional intensification and diversification al-
ternatives, through potentially promising untried candidates, at all stages of the
search process. To clarify these points by experimental analysis, some statistical
results for fitness-based selection behavior are given in section 2.

This paper is organized as follows. The statistical bases of chromosome reuse
idea are illustrated in section 2. Algorithmic description of GAs with chromo-
some reuse strategy is given in section 3. Section 4 covers the case studies for
numerical and combinatorial optimization problems. Finally, conclusions and
future research directions are specified in section 5.

2 Statistical Reasoning on the Chromosome Reuse
Strategy

The roulette-wheel and the tournament selection methods are the two most com-
monly used selection mechanisms in genetic algorithms. Both of these selection
methods are fitness-based and they aim to produce more offspring from those
high-fitness individuals. However, these selection operators leave a significant
number of individuals having close to average fitness value unused in the sense
that these individuals don’t take part in any recombination operation. The idea
of chromosome reuse is based on the fact that a significant percentage of these
unused individuals have above average fitness values and they should not be just
wasted. On the one hand, their reuse will provide additional intensification and
diversification capabilities to the evolutionary search process. On the other hand,
the use of the individuals in the chromosome library brings no extra computa-
tional cost. This is because, the structure and fitness values of these individuals
are already known. When these individuals are reused, it is possible to localize
an optimal solution over a shorter computational path as exemplified in Section
1 and as demonstrated by experimental evaluations in Section 4.

In order to understand the above reasoning more clearly, let’s take the min-
imization problem for the Ackley’s function of 20 variables [20]. A genetic al-
gorithm with 200 individuals, uniform crossover with a crossover rate 0.7 and a
mutation rate 0.01 is considered. Since it is more commonly used, the tourna-
ment selection operator is selected for illustration. Statistical data are collected
over 1000 generations. First, the ratio of the unused individuals to population
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size is shown in Figure 1. Obviously, on the average, 74% of the individuals in
every generation remain unused, they are simply discarded and replaced by the
newly produced offspring individuals. This ratio of unused individuals is inde-
pendent of the encoding method used. That is, almost the same ratio is obtained
with binary-valued and real-valued encodings.
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Fig. 1. The ratio of individuals which are not selected in any recombination operation
for a population of 200 individuals.

The average ratio of individuals not selected for recombination changes with
the population size. For example, this average is 52% for 100 individuals and 85%
for 1000 individuals. In addition to this, these average ratios are approximately
the same for the roulette-wheel selection method also.

A more clear insight can be obtained from the ratio of unused individuals
having a fitness value greater than the population’s average fitness. As illus-
trated in Figure 2, on the average, 32% of the individuals having a fitness value
above the population average are not used at all in any recombination opera-
tion. The main motivation behind the chromosome reuse strategy is to put these
close to average quality individuals into a chromosome library and make use of
them for a number of future generations. This way, possible alternative paths to
optimal solutions over these potentially promising solutions may be traced. In
these experimental evaluations, it is also seen that 24% of the individuals having
a fitness value above 0.75 ∗ Average F itness are not selected for recombination
in all generations. Instead of totally wasting these potentially promising solu-
tions, we can reuse them for a while to speedup the convergence process and to
reduce the computational cost of constructing new individuals because chromo-
somes and fitness values of the individuals in the chromosome library are already
determined.
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Fig. 2. The ratio of individuals having above average fitness and not selected in any
recombination operation for a population of 200 individuals.

3 GAs with Chromosome Reuse Strategy

GAs with chromosome reuse strategy differs from the conventional GAs in the
formation and maintenance of a chromosome library and the union of its indi-
viduals with the current population during the recombination procedure. The
algorithmic description of the proposed approach is given in Figure 3.

In the proposed approach, the total memory space used to store individuals
does not increase compared to the memory space needed by conventional GAs,
because GAs with chromosome reuse strategy achieves better performance with
smaller size populations. In experimental studies, the total number of individuals
in the population and in the chromosome library is set equal to the number of
individuals in the population of conventional GAs implementation, with which
the proposed approach achieved better performance.

4 Two Case Studies

To study the performance of the described chromosome reuse strategy, it is com-
pared with the conventional GAs for the solution of some benchmark problems
from numerical and combinatorial optimization fields. Those benchmark numer-
ical optimization problems handled in evaluations are listed in Table 1. They
are taken from [20] and [21], which are claimed to provide reasonable test
cases for the necessary combination of path-oriented and volume-oriented char-
acteristics of a search strategy. For the combinatorial optimization problems, the
100-city symmetric traveling salesman problem, kroA100, taken from the web-
site http://www.iwr.uni-heidelberg.de/ groups/ comopt/ software/ TSPLIB95/
tsp/ is taken as a representative problem instance.

In all experiments, real-valued chromosomes are used for problem represen-
tations. The selection method used is the tournament selection with elitism.
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1. Max Library Size = α ∗ Population Size, 0 < α < 1.0;
2. Fitness Treshold = β, 0 < β < 1.0;
3. Life T ime = K, where K is a predefined integer constant;
4. Generate chromosome library with randomly generated individuals;
5. Set the life time of individuals in the chromosome library to Life T ime;
6. Evaluate chromosome library;
7. Generate initial population;
8. Evaluate initial population;
9. While (NOT DONE)

10. Combine the individuals in the current population and the
chromosome library;

11. Reproduction;
12. Crossover;
13. Mutation;
14. Evaluate new population;
15. Decrease the life time of individuals in the chromosome library by 1;
16. Update chromosome library with individuals having

Fitness V alues > β ∗ Average F itness and not used in any
recombination operation.

17. end

Fig. 3. Genetic algorithms with chromosome reuse strategy.

The elite size is 10% of the population size. The uniform crossover operator
is employed with a crossover rate equal to 0.7 and the mutation rate is 0.01.
Experiments are carried out using a population size of 200 individuals for con-
ventional GAs, also the total number of individuals in the population and the
chromosome library for the proposed approach is 200, i.e. 100 individuals in
each. This way, total number of individuals in conventional GAs and GAs with
chromosome reuse strategy are kept the same. Individuals in the chromosome
library have a predefined life duration, taken as 5 iterations in the experiments,
and the removal of an individual from the chromosome library occurs either at
the end its life time or the chromosome library is full and an individual with a
better fitness replaces it. Each experiment is performed 10 times. All the tests
were run over 1000 generations.

In the following worked examples, the results obtained with conventional
GA and GAs with the chromosome reuse strategy are compared for relative
performance evaluations.

4.1 Performance of Chromosome Reuse Strategy in Numerical
Optimization

Conventional GAs are compared with GAs with chromosome reuse strategy for
the minimization of functions listed in Table 1. Each function has 20 variables.
The best solution found using the conventional GAs and GAS with chromosome
reuse strategy are given in Table 2. Chromosome reuse strategy provided very
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Table 1. Bechmark functions considered for numerical optimization.

Function Name Expression

Michalewicz f(x) = − ∑n−1
i=1 sin(xi)sin( sin(ix2

i )
π

)(2m)

− ∑n−1
i=1 sin(xi+1)sin(

2x2
i+1
π

)(2m)

0 ≤ xi ≤ π

Griewangk f(x) = 1 +
∑n

i=1
x2

i
4000 − ∏n

i=1 cos( xi√
xi

)
−100 ≤ xi ≤ 100

Rastrigin f(x) = 10n +
∑n

i=1(x
2
i − 10cos(2πxi))

−5.12 ≤ xi ≤ 5.12
Schwefel f(x) =

∑n
i=1(−xisin(

√|xi|))
−512 ≤ xi ≤ 512

Ackley’s f(x) = −ae−b
√

1
n

∑n
i=1 x2

i − e
1
n

∑n
i=1 cos(cxi) + a + e

a = 20, b = 0.2, c = 2π
−32.768 ≤ xi ≤ 32.768

De Jong (Step) f(x) = 6n +
∑n

i=1�xi�
−5.12 ≤ xi ≤ 5.12

close to optimal results in all trials. These results demonstrate the success of the
implemented GAs strategy for the numerical optimization problems.

Table 2. Performance evalution of conventional GAs and GAs with chromosome reuse
for numerical optimization.

Function Global Opt., Best Found: Conv. GA Best Found: Proposed
n=Num. Vars.

Global Min. ITER Global Min. ITER
Michalewicz -9.66 ,n = m = 10 -8.55 100 -9.36 100
Griewangk 0, n = 20 0.0001 85 1.0e−8 35
Rastrigin 0, n = 20 0.1 100 0.001 100
Schwefel −n ∗ 418.9829, n = 20 -8159 100 -8374 100
Ackley’s 0, n = 20 0.03 100 0.001 100

De Jong (Step) 0, n=20 3 100 0 77

4.2 Performance of Chromosome Reuse Strategy in Combinatorial
Optimization

To test the performance of the chromosome reuse strategy over a difficult prob-
lem of combinatorial type, the 100-city TSP kroA100 is selected. The best found
solution for this problem is 21282 obtained using a branch-and-bound algorithm.
In the ten experiments performed, the best solution found for this problem us-
ing the conventional GAs is 21340 which is obtained in 1000 generations with
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population size equal to 200. The best solution obtained with the chromosome
reuse strategy is 21282 which is obtained after 620 generations. Figure 4 shows
the relative performance of chromosome reuse approach compared to the con-
ventional GAs implementation, the straight line plot shows the results for the
chromosome reuse strategy.
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Fig. 4. Performance comparison of conventional genetic algorithms and chromosome
reuse strategy in combinatorial

5 Conclusions and Future Work

In this paper a novel external memory-based genetic algorithms strategy based
on the reuse of some potentially promising solutions from previous generations
for the production of current offspring individuals is introduced as an alternative
to the conventional implementation of GAs. The implemented strategy is used
to solve difficult problems from numerical and combinatorial optimization areas
and its performance is compared with the conventional GAs for representative
problem instances. Each problem is solved exactly the same number of times
with the employed strategies and the best and the average fitness results are
analyzed for performance comparisons. All GA parameters are kept the same in
the comparison of the two approaches.

From the results of case studies, for the same population size, it is concluded
that the chromosome reuse strategy outperforms the conventional implementa-
tion in all trials. The performance of the chromosome reuse approach is the same
for both numerical and combinatorial optimization problems. In fact, problems
from these classes are purposely chosen to examine this side of the proposed
strategy.
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This work requires further investigation from following point of views: perfor-
mance comparisons with other memory-based methods, performance evaluations
for other problem classes, such as neural network design, speech processing, and
face recognition; problem representations involving variable size chromosomes,
particularly genetic programming; and mathematical analysis of chromosome
reuse strategy.
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