
Ant-Based Crossover for Permutation Problems

Jürgen Branke, Christiane Barz, and Ivesa Behrens

Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany
branke@aifb.uni-karlsruhe.de

Abstract. Crossover for evolutionary algorithms applied to permuta-
tion problems is a difficult and widely discussed topic. In this paper
we use ideas from ant colony optimization to design a new permutation
crossover operator. One of the advantages of the new crossover operator
is the ease to introduce problem specific heuristic knowledge. Empirical
tests on a travelling salesperson problem show that the new crossover op-
erator yields excellent results and significantly outperforms evolutionary
algorithms with edge recombination operator as well as pure ant colony
optimization.

1 Introduction

Crossover for evolutionary algorithms (EAs) applied to permutation problems is
notoriously difficult, and many different crossover operators have been suggested
in the literature. Ant colony optimization (ACO), however, seems particularly
well suited for permutation problems. In this paper, we propose to hybridize
these two approaches in a way that performs better than either of the original
approaches. In particular, we design a new crossover operator, called ant-based
crossover (ABX), which uses ideas from ACO within an EA framework.

In ACO, new solutions are constructed step by step based on a pheromone
matrix which contains information about which decisions have been successful
in the past. Furthermore, problem specific heuristic knowledge is usually used
to influence decisions. In ABX, a temporary pheromone matrix is constructed
based on the parents selected for mating. This temporary pheromone matrix is
then used to create one or several children in the standard way employed by
ACO. This has several interesting implications: First of all, it is now as easy as
in ACO to incorporate problem-specific heuristic knowledge. Furthermore, we
gain additional flexibility. For example, it is natural to extend ABX to construct
children from more than two parents, or to integrate ACO as local optimizer.
Finally, the use of a population allows us to explicitly maintain several different
good solutions, which is not possible in pure ACO approaches.

While we do not see any reason why the proposed approach should not be
successful on a wide range of permutation problems, in this paper we concen-
trate on the travelling salesperson problem (TSP). We empirically compare our
approach with an evolutionary algorithm with edge recombination as well as a
pure ACO algorithm.

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2723, pp. 754–765, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: ¡M
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (¡M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

Ant-Based Crossover for Permutation Problems 755

The paper is structured as follows: the next section surveys related work and
provides a brief overview on recombination operators for permutation problems
as well as on ant colony optimization. In Section 3 we introduce the new ant-
based crossover operator. The approach is evaluated empirically in Section 4.
The paper concludes in Section 5 with a summary and ideas for future work.

2 Related Work

2.1 Permutation Crossover

Crossover for permutation problems is difficult, and has been discussed in the
literature for a long time. Generally, a crossover operator should create feasible
offspring by combining parental information in a sensible way. What is to be
considered sensible also depends on the application at hand. For example, with
regard to a TSP, it seems more important to preserve edges from the parents
(i.e. direct adjacencies in the permutation), while for a scheduling problem, it is
more important to preserve the general precedence relations (cf. [2]).

Standard one-point or multi-point crossover does not work for permutations,
as it would generate infeasible offspring. The crossover operators suggested in the
literature are numerous and range from simple approaches such as order crossover
[5] or partially mapped crossover [8] to more complicated ones such as distance
preserving crossover [7], edge assembly crossover [15], inner-over crossover [18],
natural crossover [12], or edge recombination crossover [20]. The difficulty of
designing a proper permutation crossover even led some researchers to abandon
a permutation representation, and to use e.g. random keys encoding [1] instead.

For TSPs, edge recombination crossover (ERX) seems to be a very effective
crossover operator as it is able to preserve more than 95% of the parental edges
[20]. We will use it later for comparison with ABX and therefore discuss it here
in slightly more detail: Starting from a random city, ERX iteratively constructs
a tour. In each step, it first considers the (up to 4) cities that are neighbors (i.e.
connected) to the current location in either of the two parents. If at least one
of those has not been visited so far, it selects the city which has the fewest yet
unvisited other cities as neighbors in the parents. Otherwise, a random successor
is selected. For details, see [20].

There have also been attempts to incorporate problem-specific knowlege into
the crossover operator. For example, Grefenstette [9] and Tang and Leung [17],
propose variants of ERX, which, when they have to choose between parental
edges, prefer the short ones. Julstrom and Raidl [11] compare several ways for
prefering short edges within an ERX framework, for decisions between parental
edges as well as for decisions when all parental edges are unadmissible. In effect,
the latter approach comes quite close to the the simplest form of ABX proposed
here. Despite of this similarity, it still differs in the way the parental information
and the heuristic information are combined. Furthermore, it lacks the whole
general ACO framework, which allows us to e.g. additionally use ACO as local
optimizer.

756 J. Branke, C. Barz, and I. Behrens

2.2 Ant Colony Optimization

Standard ACO: ACO is an iterative probabilistic optimization heuristic in-
spired by the way real ants find short paths between their nest and a food source.
The fundamental principle used by ants for communication is stigmergy, i.e. ants
use pheromones to mark their trails. A higher pheromone intensity suggests a
better path and consequently inclines more ants to take a similar path.

Transferring these ideas to the artificial scenario of a TSP with n cities, an
ACO approach works as follows (cf. [3,6]): In every iteration, a number of m (ar-
tificial) ants construct one solution each through all the given n cities. Starting
at a random city, an ant iteratively selects the next city based on heuristic in-
formation as well as pheromone information. The heuristic information, denoted
by ηij , represents a priori heuristic knowledge w.r.t. how good it is to go from
city i to city j. For TSPs, ηij = 1/dij where dij is the distance between city i
and j. The pheromone values, denoted by τij , are dynamically changed by the
ACO algorithm and serve as a kind of memory, indicating which choices were
good in the past.

When having inserted city i in the previous step, the next city j is chosen
probabilistically according to the following probabilities:

pij =
τα
ij · ηβ

ij
∑

h∈S τα
ihηβ

ih

, (1)

where S is the set of cities that have not been visited yet, and α and β are con-
stants that determine the relative influence of the heuristic and the pheromone
values on the ant’s decision.

After each of the m ants have constructed a solution, the pheromone infor-
mation is updated. First, some of the old pheromone is evaporated on all edges
according to τij �→ (1− ρ) · τij , where parameter ρ ∈ (0, 1) specifies the evapora-
tion rate. Afterwards, a fixed amount ∆ of additional pheromone is ‘deposited’
along all tour edges of the best ant in the iteration. Often, the elitist ant (rep-
resenting the best solution found so far) is also allowed to deposit pheromone
along its path. Each of these positive updates has the form τij �→ τij + ∆ for all
cities i and j connected by an edge of the respective tour. Initially τij = τ0 for
each edge eij .

Population-Based Ant Colony Optimization (PACO): The population-
based ACO (PACO), which has been proposed by Guntsch [10], is a modifica-
tion of the standard ACO. The main difference is that the pheromone matrix no
longer accumulates the information from all the updates over time, but instead
only contains information about a small number k of solutions explicitly main-
tained in a population. Solution construction is performed probabilistically as in
the standard ACO described above. The main change is the pheromone update,
which is described in more detail in the next paragraph.

In the beginning, the pheromone matrix is initialized with a constant value
τ0, the solution population with a maximal size of k is empty. Then, in each

Ant-Based Crossover for Permutation Problems 757

of the k first iterations, the iteration’s best ant is allowed to lay pheromone
(τij �→ τij + ∆) on all edges of its tour in the pheromone matrix. Futhermore,
the tour is added to the solution population. No pheromone evaporates during
the first k iterations. In all subsequent iterations (k + 1), (k + 2), . . ., the best
ant updates as before and is added to the solution population. To keep the
population size constant, another solution of the population (usually the worst
or the oldest) is deleted, and the respective amount of pheromone is subtracted
from the elements of the pheromone matrix corresponding to the deleted solution
(τij �→ τij − ∆). The information of the deleted ant completely disappears in
one iteration. Consequently, the pheromone matrix only preserves information
about the k ants currently in the solution population. Observe that in PACO,
pheromone values never fall below the initial amount of pheromone τ0 and never
exceed τ0 + k∆.

The fact that the pheromone matrix used in PACO represents only a small
number of solutions inspired us to design ABX which shall be described in Sec-
tion 3.

2.3 Hybrids

A couple of authors have suggested to combine the ideas of ACO and EAs in
several ways. Bonabeau et al. [4], for example, propose to optimize ACO param-
eters using an EA, and Miaghikh and Punch [13,14] design a hybrid which uses
a pheromone matrix as well as a complete solution as part of each individual’s
representation. To the authors’ knowledge, no one has ever proposed to use an
ACO algorithm to replace crossover in the way presented in this paper.

Many approaches combine metaheuristics with local search for best results
[7]. But here we are interested in the workings of the specific crossover opera-
tor proposed. Since we were afraid that local search might blur the effects of
crossover, we decided to concentrate on crossover alone.

3 Ant-Based Crossover

The fundamental idea of ABX is as follows: In each generation of the EA the
parents are regarded as a solution population in the sense of a PACO. Their tour
information is used to generate temporary pheromone matrices. These tempo-
rary pheromone matrices are then used by ants to generate new solutions. The
generated set of solutions is the candidate set for the children returned to the
EA. This creates a number of design options which are discussed in the following:

Number of parents: In principle, the temporary pheromone matrix can be
created from an arbitrary number of parents, ranging from 1 to the population
size p. We denote this parameter �parents.

758 J. Branke, C. Barz, and I. Behrens

Pheromone matrix initialization: It is important how much influence is
given to the parents relative to the basic initialization value τ0 = 1/n. We tested
two basic possibilities:

– Uniform update: each parent deposits a pheromone value of 1/�parents on
each of the edges along its tour.

– Rank-based update: The amount of pheromone a parent is allowed to deposit
depends on its rank within the set of parent individuals. The individual with
rank i(i = 1 . . . �parents) is allowed to deposit

∆i =
b

�parents
−

(
2b − 2

�parents

) (
i − 1

�parents − 1

)

with b = 1.5, which results in a linear weighting from best to worst.

In both cases, the total amount of pheromone in each row of the pheromone
matrix is equal to 2. Half of it results from the initialization τ0 and half of it
from the parents’ updates.

ACO run: Given a temporary pheromone matrix, we have to decide on the
number of iterations �iter we would like to run the ACO, and the number of
solutions m that are constructed in each iteration. In case we decide to run the
ACO for more than one iteration, a pheromone update strategy has to be chosen
as well. We used the standard evaporation strategy in combination with an elite
ant for pheromone update, the update value was set to ∆ = 1/�parents.

Number of children: The general scheme allows us to create any number of
children from a single crossover operation, ranging from one to m · �iter. The
number of children is henceforth denoted �children, and the best �children from
the m · �iter generated solutions are returned as children.

4 Empirical Evaluation

For empirical evaluation, we proceed as follows: first, we try to find a reasonable
set of the basic EA parameter settings. Parameters are tuned independently for
an EA with ERX and an EA with ABX. Then, in a second step we will examine
the effect of the parameters and design choices specific to the ant-based crossover.
Finally, we will compare our approach to the standard algorithms ACO and EA
with ERX on different TSP test instances.

4.1 Test Setup

For the initial parameter tuning, we use the eil101 TSP instance from TSPLIB
[16] which has an optimal tour length of 629. Our basic EA uses a (µ + λ)-
reproduction scheme1 with tournament selection and tournament size of 2. To
keep the number of free parameters small, we fix µ to 50 and only vary λ.
1 λ children are created in every generation, and then compete with the µ individuals

from the last generation’s population for survival into the next generation

Ant-Based Crossover for Permutation Problems 759

Mutation swaps the subtour between two randomly selected cities. The first
city is selected at random, and the second city is selected in its neighborhood.
More specifically, if c1 is the position of the first city in the current tour, the
second city’s position is determined using a gaussian distribution with expected
value of c1 and standard deviation σ (result modulo n). The mutation operator is
called with probability mutprob. If an individual is mutated, at least one swap is
performed. Additional swaps are performed with probability repeatSwap, which
results in a geometric distribution of the number of swaps with mean 1/(1 −
repeatSwap). All children are created by crossover, i.e. crossover probability is
equal to 1.0. Specifically for ABX, parameters α and β are fixed to standard
values 1 and 5 respectively.

Each algorithm terminates after a fixed number of 50, 000 evaluations. Note
that the EA with ERX always generates one child per crossover and performs λ
evaluations per generation of the EA, i.e. the EA runs for 50, 000/λ generations.
With ABX, each solution generated by an ant counts as one evaluation, i.e.
there are (λ/�children)(m · �iter) evaluations per generation of the EA, which
can be significantly larger than λ. The number of EA generations is reduced
accordingly. Recalculating the fitness after mutation is not counted towards the
number of evaluations, since this can be done very efficiently in constant time
for the given mutation operator. A comparison based on a fixed number of
evaluations implicitly assumes that evaluation is much more time consuming
than the crossover operation. This is true for many problems but not for a TSP.
On the other hand, fixing the runtime makes the result very much dependent
on implementation issues. In our experiments with up to 198 cities, the actual
runtime differences between the different examined approaches were negligible.
We therefore decided to use a fixed number of evaluations as stopping criterion.

In the results reported below, the performance of each parameter set is av-
eraged over 20 runs with different random seeds. T-tests with significance level
of 0.99 are used to analyze significance.

4.2 Basic EA Parameters

The basic EA parameters tuned first are the number of offspring per generation
λ, the mutation probability mutprob, the expected length of the swapped tour σ,
and the mutation frequency repeatSwap. With regard to ABX, for the test re-
ported here, we use rank-based update of the parents, two parents per crossover,
and a single ant producing a single child based on the temporary pheromone
matrix (�children = 1, m = 1, �iter = 1).

We test all possible combinations of the parameter settings listed in Table 1.
The settings that perform best for ERX are λ = 50, mutprob = 0.8, σ = 15 and
repeatSwap = 0.1 which yield a solution quality of 691.8.

For the EA with ABX, λ = 1 performs slightly (but not significantly) better
than λ = 24. Nevertheless, we chose λ = 24 for further testing, since λ = 1
restricts the testing of child-parent combinations too much. The effect of the
mutation parameters seem to be relatively small. We select the following pa-
rameters for future tests: mutprob = 0.25, σ = 1 and repeatSwap = 0.1. It is

760 J. Branke, C. Barz, and I. Behrens

Table 1. Tested parameter values for reproduction and mutation, settings chosen for
future tests are bold.

ERX ABX
λ 1, 25, 50 1, 24, 50

mutprob 0.25, 0.6, 0.8, 1.0 0.0, 0.25, 0.5, 0.75
σ 3, 10, 15 1, 3, 10

repeatSwap 0.1, 0.4, 0.5, 0.6 0.0, 0.1, 0.5

interesting to note that the results without mutation (mutprob = 0) are almost
as good. The fact that mutation plays a minor role in ant-based crossover is not
really surprising, because variation is introduced implicitly as part of crossover
by the way ants construct their tours probabilistically.

4.3 Parameters for Ant-Based Crossover

In this section, we analyze the influence of the parameters and design choices
specific to ABX. For that purpose, we test all feasible combinations of the param-
eters specified in Table 2. Evaporation rate ρ is set to 0.1 where needed. Addition-
ally, we test a large number of combinations with �children = 8, �parents = 1,
�parents = 50 as well as �iter = 15.

Table 2. Tested parameter values for ABX

parameter values tested
�parents 2, 4, 8

parentalUpdate constant, rank-based
�children 1, 2, 24

m 1, 2, 12, 24
�iter 1, 2 or 5

Overall, the approach seems to be rather robust with respect to the parameter
settings chosen. The following paragraphs outline the main results for the five
examined parameters. Results with respect to a specific parameter are averaged
over all settings of the other parameters (as long as they existed for all settings
of the examined parameter).

Number of parents: Table 3 shows the best tour length over all performed
test runs classified according to the number of parents and the parental update
strategy. As can be seen, using two or four parents for crossover is better than
only one or more than eight. The differences are statistically significant. Looking
at the convergence graphs (not shown), it becomes apparent that increasing the
number of parents slows down convergence.

Ant-Based Crossover for Permutation Problems 761

Table 3. Test results depending on the number of parents and the parental update

parental update
all constant rank-based

�parents mean std. error mean mean
1 639.61 0.2234 639.61 639.61
2 636.38 0.2095 636.36 636.72
4 636.38 0.1820 636.89 636.33
8 637.68 0.2596 637.91 637.50
50 641.27 0.4559 642.60 639.94

all combinations 637.93 0.1736 638.30 637.56

Parental update: Unsurprisingly, rank-based parental update leads to faster
convergence than uniform parental update, due to the additional influence of
good parents (convergence curves are not shown due to space limitations). As
can be seen in Table 3, the difference of the two update strategies w.r.t. the ob-
tained tour length is rather small, but becomes more pronounced in combination
with a large number of parents. As has been noted in the previous paragraph,
increasing the number of parents slows down convergence. This effect should be
counterbalanced to some degree e.g. by using the rank-based parental update.

Number of children per crossover: The 24 children generated per genera-
tion of the EA can be produced by calling the ABX once with �iter · m > 24.
Alternatively, one may call the ABX several times, thereby splitting the total of
24 children to be generated evenly among the ABXs. Our test results suggest
that it is significantly better to generate only a few children per crossover and
rather call the ABX more than once with a smaller number of children each. In
other words, it seems to be important that the children are generated based on
the information from different sets of parents. The reason may be that if all 24
children are based on one temporary pheromone matrix, they might be so similar
that they lead to early convergence of the EA. Overall, test runs converge slower
with decreasing �children, but to a better solution (cf. Figure 1). This effect is
strengthened with increasing �iter (see below).

Number of ants per iteration: Increasing the number of ants m per ACO
iteration implicitly leads to better children. On the other hand, the number of
fitness evaluations required per generated child is increased, meaning that the
EA can only run for fewer generations. Our tests show that the parameter has
little influence on the final results, although convergence is slowed down a bit
with increasing m. Apparently, the effect of improved children is not able to
outweigh the reduction of EA generations, at least not given the limit of 50,000
evaluations (cf. Table 4). For our test environment, between two and twelve ants
per iteration seem to perform best.

762 J. Branke, C. Barz, and I. Behrens

640

645

650

655

660

5000 20000 35000 50000

m
ea

n
to

ur
 le

ng
th

number of evaluations

1 child
2 children
8 children

24 children

Fig. 1. Convergence behavior of runs with different numbers of children per crossover.

Number of ACO iterations: Similar to increasing the number of ants per
iteration, increasing the number of iterations per ACO improves the quality of
the generated children at the expense of requiring a larger number of fitness
evaluations. Although the additional search should be more structured, when
comparing Tables 4 and 5, little difference can be observed regarding the effect
of these two parameters. According to our test results, two or five iterations of
ants yield the shortest tours. These two settings are significantly better than
only a single iteration (cf. Table 5).

Note that the standard error of the results for 15 iterations is relatively
high. As can be seen in Figure 2, this high variance can be traced back to two
different effects. First of all, in case all children of one generation are generated
from a single ACO run, 15 generations lead to premature convergence after only
15, 000 − 20, 000 evaluations and very poor results. The effect of many children
generated from a single temporary pheromone matrix, as has been described
above, is emphasized by running many ACO iterations, since the pheromone
matrix converges and thus the children become even more similar. If few children
are generated, two cases can be distinguished: If m is large, the number of
evaluations per child becomes so high that the runs are far from convergence
given the maximum of 50,000 evaluations, and consequently the results are rather
poor. On the opposite , the algorithm converges and the results are very good if m

Table 4. Test results depending on the
number of ants per ACO iteration

m mean std. error
1 636.85 0.3200
2 636.33 0.2619
12 636.14 0.2816
24 637.79 0.4289

Table 5. Test results depending on the
number of ACO iterations

�iter mean std. error
1 637.27 0.2458
2 636.54 0.2292
5 636.62 0.3122
15 637.53 0.6761

Ant-Based Crossover for Permutation Problems 763

635

640

645

650

655

660

665

670

675

680

5000 20000 35000 50000

m
ea

n
to

ur
 le

ng
th

number of evaluations

24 children
set A
set B

Fig. 2. Convergence behavior of runs with 15 generations of ants. The first line has
24 children per ABX. Sets A and B are averages over runs with ≤ 12 children per
operator, set A over those with less than 4000 evaluations per crossover, set B over
those with more than 4000 evaluations per crossover.

is sufficiently small. On the whole, increasing the number of ACO iterations leads
to promising solutions given that the algorithm has sufficient time to converge
and the number of children per population is small.

Summary: To sum up, the EA with ABX is quite robust with respect to the
examined parameter settings. As is often the case, the ideal parameter settings
probably depend on the time available for computation. We have demonstrated
that the number of evaluations per crossover operator (m · #iter) plays an im-
portant role. If this number is too large, the algorithm will not converge in the
given time frame. Apparently, in most cases the effect of local optimization due
to the larger number of tours evaluated cannot outweigh the reduction of gen-
erations performed by the EA. This stresses the importance of the EA heuristic
and clarifies that ABX avails itself of both algorithms and is more than a splitted
ACO. For the tests reported in the next section, we use two parents per ABX
with uniform update and allow 12 ants to run for 5 iterations to produce one
child.

4.4 Comparison of ABX with ERX, and ACO

To compare the performance of our ABX with the other heuristics, we carry
out test runs on the following three benchmark problems from the TSPlib [19]:
eil101 with 50, 000 evaluations, kroA150 with 75, 000 evaluations and d198 with
100, 000 evaluations (linearly increasing the maximum allowed number of eval-
uations with the number of cities in the problem). Since in practice, it is not
possible to perform extensive parameter tuning when solving a new problem in-
stance, for all heuristics we use the same parameter settings that have proven
successful for eil101 respectively. The results are summarized in Table 6.

764 J. Branke, C. Barz, and I. Behrens

Table 6. Comparison of the ant-based crossover with other approaches

Problem Instance
Heuristic eil101 kroA150 d198

ERX 691.8 32985.85 18671.8
Standard ACO 638.5 27090.76 16123.36

Ant-Based Crossover 632.5 26807.8 16080.8
Optimum 629 26524 15780

As can be seen, our EA with ABX clearly outperforms the EA with ERX in all
tested problem instances. It also performs significantly better than pure ACO2.
In addition, we can compare ABX to the relatively similar weight-biased edge-
crossover reported in [11]. For the tested kroA150 problem, Julstrom and Raidl
report an average result of 27081 for their best strategy after 150,000 evaluations,
which is clearly inferior to our result of 26807.8 after 75,000 evaluations (at least
when ignoring other factors influencing computational complexity).

5 Conclusion and Future Work

In this paper we introduced a new crossover operator for permutation problems
which draws on ideas from ant colony optimization (ACO). With the suggested
ant-based crossover (ABX), it is straightforward to integrate problem-specific
heuristic knowledge and local fine-tuning into the crossover operation. First em-
pirical tests on the TSP have shown that the approach is rather robust with
respect to parameter settings, and that it significantly outperforms an EA with
edge recombination crossover, as well as pure ACO.

Given these excellent results, the performance of the ABX should also be
tested on other permutation problems such as scheduling or the quadratic as-
signment problem. A more thorough comparison of the computational complex-
ities of the different approaches would also be desirable. Finally, for best results,
a hybridization of our approach with local optimizers like Lin-Kernighan should
be tested.

References

1. J. C. Bean. Genetic algorithms and random keys for sequencing and optimization.
ORSA Journal on Computing, 6(2):154–160, 1994.

2. C. Bierwirth, D.C. Mattfeld, and H. Kopfer. On permutation representations for
scheduling problems. In H.-M. Voigt, editor, Parallel Problem Solving from Nature,
volume 1141 of LNCS, pages 310–318. Springer, Berlin, 1996.

3. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence: from natural to
artificial systems. Oxford University Press, 1999.

2 m = 15, α = 1, β = 5, ρ = 0.01, τ0 = 0.5, fix update of ∆ = 0.05 for best ant of
iteration and elite ant, and minimal pheromone value of τmin = 0.001.

Ant-Based Crossover for Permutation Problems 765

4. H. M. Botee and E. Bonabeau. Evolving ant colonies. Advanced Complex Systems,
1:149–159, 1998.

5. L. Davis. Applying adaptive algorithms to epistatic domains. In International
Joint Conference on Artificial Intelligence, pages 162–164, 1985.

6. M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. In
D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages
11–32. McGraw-Hill, 1999.

7. B. Freisleben and P. Merz. New genetic local search operators for the traveling
salesman problem. In Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and
Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature, volume 1141,
pages 890–899, Berlin, 1996. Springer.

8. D. E. Goldberg and R. Lingle. Alleles, loci, and the TSP. In J. J. Grefen-
stette, editor, First International Conference on Genetic Algorithms, pages 154–
159. Lawrence Erlbaum Associates, 1985.

9. J. J. Grefenstette. Incorporating problem specific knowledge into genetic algo-
rithms. In Genetic Algorithms and Simulated Annealing, pages 42–60. Morgan
Kaufmann, 1987.

10. M. Guntsch and M. Middendorf. A population based approach for ACO. In
European Workshop on Evolutionary Computation in Combinatorial Optimization,
volume 2279 of LNCS, pages 72–81. Springer, 2002.

11. B. A. Julstrom and G. R. Raidl. Weight-biased edge-crossover in evolutionary al-
gorithms for two graph problems. In G. Lamont, J. Carroll, H. Haddad, D. Morton,
G. Papadopoulos, R. Sincovec, and A. Yfantis, editors, 16th ACM Symposium on
Applied Computing, pages 321–326. ACM Press, 2001.

12. S. Jung and B.-R. Moon. Toward minimal restriction of genetic encoding and
crossovers for the two-dimensional Euclidean TSP. IEEE Transactions on Evolu-
tionary Computation, 6(6):557–565, 2002.

13. V. V. Miagkikh and W. F. Punch. An approach to solving combinatorial optimiza-
tion problems using a population of reinforcement learning agents. In Genetic and
Evolutionary Computation Conference, pages 1358–1365, 1999.

14. V. V. Miagkikh and W. F. Punch. A generalized approach to handling parameter
interdependencies in probabilistic modeling and reinforcement learning optimiza-
tion algorithms. In Workshop on Frontiers in Evolutionary Algorithms, 2000.

15. Y. Nagata and S. Kobayashi. Edge assembly crossover: A high-power genetic
algorithm for the traveling salesman problem. In T. Bäck, editor, International
Conference on Genetic Algorithms, pages 450–457. Morgan Kaufmann, 1997.

16. G. Reinelt. TSPLIB - a travelling salesman problem library. ORSA Journal on
Computing, 3:376–384, 1991.

17. A.Y.-C. Tang and K.-S. Leung. A modified edge recombination operator for the
travelling salesman problem. In Parallel Problem Solving from Nature II, volume
866 of LNCS, pages 180–188, Berlin, 1994. Springer.

18. G. Tao and Z. Michalewicz. Evolutionary algorithms for the TSP. In A. E. Eiben,
T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem Solving from
Nature, volume 1498 of LNCS, pages 803–812. Springer, 1998.

19. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
index.html.

20. D. Whitley, T. Starkweather, and D’A. Fuquay. Scheduling problems and traveling
salesman: The genetic edge recombination operator. In J. Schaffer, editor, Inter-
national Conference on Genetic Algorithms, pages 133–140. Morgan Kaufmann,
1989.

	Introduction
	Related Work
	Permutation Crossover
	Ant Colony Optimization
	Hybrids

	Ant-Based Crossover
	Empirical Evaluation
	Test Setup
	Basic EA Parameters
	Parameters for Ant-Based Crossover
	Comparison of ABX with ERX, and ACO

	Conclusion and Future Work

