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Abstract. This paper describes the application of four evolutionary al-
gorithms to the pruning of neural networks used in classification prob-
lems. Besides of a simple genetic algorithm (GA), the paper considers
three distribution estimation algorithms (DEAs): a compact GA, an ex-
tended compact GA, and the Bayesian Optimization Algorithm. The
objective is to determine if the DEAs present advantages over the simple
GA in terms of accuracy or speed in this problem. The experiments used
a feedforward neural network trained with standard backpropagation
and public-domain and artificial data sets. The pruned networks seemed
to have better or equal accuracy than the original fully-connected net-
works. Only in a few cases, pruning resulted in less accurate networks.
We found few differences in the accuracy of the networks pruned by the
four EAs, but found important differences in the execution time. The
results suggest that a simple GA with a small population might be the
best algorithm for pruning networks on the data sets we tested.

1 Introduction

The success of neural networks (NNs) largely depends on their architecture,
which is usually determined by a trial-and-error process. There are numerous
combinations of neural networks and evolutionary algorithms (EAs) to optimize
the network architecture to reach the highest possible classification accuracy [1,
2]. In the present paper, we examine neural network pruning by four evolutionary
algorithms to improve the generalization accuracy in classification problems.

We experimented with a simple genetic algorithm (sGA) and three distribu-
tion estimation algorithms (DEAs): a compact GA (cGA), an extended compact
GA (ecGA), and the Bayesian Optimization Algorithm (BOA). Instead of the
mutation and crossover operations of conventional GAs, DEAs use a statisti-
cal model of the individuals that survive selection to generate new individuals.
Numerous experimental and theoretical results show that DEAs can solve hard
problems reliably and efficiently [3–5].

The objective of this study is to determine if DEAs present advantages over
simple GAs in terms of accuracy or speed when applied to neural network prun-
ing. The networks used in the experiments were conventional feedforward per-



ceptrons with one hidden layer and were trained with the backpropagation al-
gorithm. The experiments used 13 public-domain and two artificial data sets.

Our target was to maximize the accuracy of classification. The experiments
demonstrate that in most cases, pruned networks have at least as good accuracy
as fully-connected networks. We found few significant differences in the accuracy
of networks pruned by the four EAs, but found important differences in the
execution time.

The next section presents background on neural network pruning, including
some previous applications of EAs to pruning. Section 3 describes the algorithms,
data sets, and the method used to compare the algorithms. The experimental
results are presented in section 4. Section 5 concludes this paper with a summary,
the conclusions of this study, and a discussion of future research directions.

2 Neural Network Pruning

It is well known that a network that is too big for a particular classification
task is more likely to overfit the training data and have poor performance on
unseen examples (i.e., poor generalization) than a small network. Therefore, a
heuristic to obtain good generalization is to use the smallest network that will
learn to classify correctly the training data. However, the optimal network size is
usually unknown and tedious experimentation becomes necessary to find a good
network. An alternative to improve generalization is to train a network that is
believed to be larger than necessary and prune the excess parts.

Numerous algorithms have been used to prune neural networks [6]. Prun-
ing begins by training a fully-connected neural network. Most pruning methods
delete a single weight at a time in a greedy fashion, which may result in sub-
optimal pruning. Additionally, many pruning methods fail to account for the
interactions between multiple weights. This may be problematic if deleting one
weight makes it appear as if another weight that should be pruned is important
for the operation of the network. An algorithm that considers weight interactions
and more than one weight at a time may have better chances of reducing the
size of the network significantly without affecting the classification accuracy. For
these reasons, GAs and DEAs seem promising for NN pruning.

Genetic algorithms have been used to prune networks and are reported to
deliver good results [7–9]. Applying GAs to prune networks is straightforward:
The chromosomes contain one bit for each weight, and the value of the bit
determines whether the weight will be used in the final network. This simple
binary encoding is used in the experiments in the present paper. Other more
sophisticated methods of simultaneously training and pruning the networks were
introduced by Schmidt and Stidsen [10].

Whitley [11] suggests to retrain the network for a few epochs after pruning
the weights. We performed experiments to confirm this idea, but our experiments
show only limited advantages of retraining.



It is also possible to prune entire (input and hidden) nodes, but in the present
paper we experiment only with the more common approach of pruning individual
weights. We leave pruning units to future work.

3 Methods

This section describes the algorithms and the data sets used in this paper as
well as the statistical method used to compare the algorithms.

3.1 Algorithms

The simple genetic algorithm in this study uses binary strings, binary (pair-
wise) tournament selection without replacement, uniform crossover, and bit-
wise point mutation. Simple GAs such as this have been used successfully in
many applications. However, it has long been recognized that the problem-
independent crossover operators used in simple GAs can disrupt groups of related
variables and prevent the algorithm from reaching the global optimum, unless
exponentially-sized populations are used. (Thierens [12] gives a good description
of this problem).

One approach to identify and exploit the relationships among variables is
to estimate the joint distribution of the individuals that survive selection and
use this model to generate new individuals. The complexity of the models has
increased over time as more sophisticated methods of building models from data
and more powerful computers become available. Interested readers can consult
the reviews by Pelikan et al. [13] and Larrañaga et al. [14].

The simplest model-building EA used in the experiments reported here is
the compact GA [15]. This algorithm assumes that the variables (bits) that
represent the problem are independent, and therefore it models the population
as a product of Bernoulli distributions. The compact GA receives its name from
the compact way it represents the population: The cGA uses a vector p of length
equal to the problem’s length, l. Each element of p contains the probability that
a sample will take the value 1. If the Bernoulli trial is not successful the sample
will be 0. All positions of p are initialized to 0.5 to simulate the usual uniform
random initialization of simple GAs. New individuals are obtained by sampling
consecutively from each position of p and concatenating the values obtained.
The probabilities vector is updated by comparing the fitness of two individuals
obtained from it. For each pk, k = 1, .., l, if the fittest individual has a 1 in the
k-th position, pk is increased by 1/n, where n is the size of the virtual population
that the user wants to simulate. Likewise, if the fittest individual has a 0 in the
k-th position, pk is decreased by 1/n. The cGA iterates until all positions in pk

contain either zero or one.

PBIL [16] and the UMDA [17] are other examples of algorithms that use
univariate models and operate on binary alphabets. They differ from the cGA
in the method to update the probabilities vector.



The extended compact GA [18] uses a product of marginal distributions on
a partition of the variables. In this model, subsets of variables can be modeled
jointly, and the subsets are considered independent of other subsets. Formally,
the model is P =

∏m

i=0 Pi, where m is the number of subsets in a partition of the
variables and Pi represents the distribution of the i-th subset. The distribution
of a subset with k members is stored in a table with 2k−1 entries. The challenge
is to find a partition that models the population correctly. Harik [18] proposed
a greedy search that initially supposes that all variables are independent. The
model search tries to merge all pairs of subsets and chooses the merger that min-
imizes a complexity measure based on information theory. The search continues
until no further subsets can be merged. In contrast to the cGA, the ecGA has an
explicit population that is evaluated and subject to selection at each iteration of
the algorithm. The algorithm builds the model considering only those solutions
that survive selection. The population is initialized randomly, and new individ-
uals are generated by sampling consecutively from the m subset distributions.

The Bayesian Optimization Algorithm [3] models the selected individuals
using a Bayesian network, which can represent dependence relations among an
arbitrary number of variables. Independently, Etxeberria and Larrañaga [4] and
Mühlenbein and Mahnig [5] introduced similar algorithms. The BOA uses a
greedy search to optimize the Bayesian Dirichlet metric, a measure of how well
the network represents the data (the BOA could use other metrics). The user
specifies the maximum number of incoming edges to any node of the network.
This number corresponds to the highest degree of interaction assumed among the
variables of the problem. As the ecGA, the BOA builds the model considering
only the solutions that survived selection. New individuals are generated by
sampling from the Bayesian network.

The main difference between the ecGA and the BOA is the model that they
use to represent the survivors. Figure 1 illustrates the different models used by
the ecGA and the BOA. The ecGA cannot represent individual relationships
among the variables in a subset.

The experiments used the C++ implementations of the ecGA [19] and the
BOA version 1.0 [20] that are distributed by their authors on the web (at
http://www-illigal.ge.uiuc.edu). The ecGA code has a non-learning mode
that emulates the cGA. The sGA and the neural network were developed in C++.
All programs were compiled with g++ version 2.96 using -O2 optimizations. The
experiments were executed on a single processor of a Linux (Red Had 7.2) work-
station with dual 2.4 GHz Intel Xeon processors and 512 Mb of memory. The
ecGA and the BOA codes were modified to use a Mersenne Twister random
number generator, which was also used in the GA and the data partitioning.

The algorithms used populations with 1024 individuals and were initialized
uniformly at random. The GA used uniform crossover with probability 1.0, and
mutation with probability 1/l, where l was the length of the chromosomes and
corresponds to the total number of weights in the network. Promising solutions
were selected with pairwise binary tournaments without replacement. The cGA,
ecGA, and the BOA used the default parameters provided in their distributions:



(a) ecGA (b) BOA

Fig. 1. Representation of the models used in the ecGA and the BOA.

The cGA and ecGA used tournaments among 16 individuals, and the BOA used
truncation selection with a threshold of 50%. All algorithms were terminated
after observing no improvement in the best individual over five consecutive gen-
erations, or until a limit of 50 generations was reached.

The network used in the experiments was a fully-connected perceptron with
a single hidden layer. The hidden and output units compute their output as
f(net) = tanh(net), where net =

∑d
i=1 xiwi + w0 is the net activation, the xi

are inputs to the unit, wi are the connection weights and w0 is a bias term. The
weights were initialized uniformly at random in the interval [-1,1]. Before each
EA run, a network was trained with simple backpropagation using a learning
rate of 0.15 and a momentum term of 0.9. The sizes of the network and the
number of training epochs varied for each data set and are specified in table 1.

For all the algorithms, the classification accuracy of the pruned network
on the training data served as the fitness function. In cases where the pruned
network is retrained with backpropagation, the algorithms exploit the Baldwin
effect: The retrained pruned network is used to evaluate the fitness, but the
retrained weights are not inherited. Note that the fitness measure does not bias
the search explicitly toward networks with few weights.

3.2 Data Sets

The data sets used in the experiments are described in table 1. The data sets are
available in the UCI machine learning repository [21], except for Random21 and
Redundant21, which are artificial data sets with 21 features each. The target
concept of these two data sets is to define whether the first nine features are
closer to (0,0,...,0) or (9,9,...,9) in Euclidean distance. The features were gener-
ated uniformly at random in the range [3,6]. All the features in Random21 are
random, and the first, fifth, and ninth features are repeated four times each in



Table 1. Description of the data sets used in the experiments. For each data set, the
table shows the number of instances; the number of classes; the number of continuous
and discrete features; the number of input, hidden, and output units; and the number
of epochs of backpropagation used to train the networks.

Features Neural Network

Domain Cases Class Cont. Disc. Input Output Hidden Epochs

Breast Cancer 699 2 9 – 9 1 5 20
Credit-Australian 653 2 6 9 46 1 10 35
Credit-German 1000 2 7 13 62 1 10 30
Heart-Cleveland 303 2 6 7 26 1 5 40
Housing 506 3 12 1 13 3 2 70
Ionosphere 351 2 34 – 34 1 10 40
Iris 150 3 4 – 4 3 5 80
Kr-vs-kp 3196 2 – 36 74 1 15 20
Pima-Diabetes 768 2 8 – 8 1 5 30
Segmentation 2310 7 19 – 19 7 15 20
Sonar 208 2 60 – 60 1 10 60
Vehicle 846 4 18 – 18 4 10 40
Wine 178 3 13 – 13 3 5 15
Random21 2500 2 21 – 21 1 1 100
Redundant21 2500 2 21 – 21 1 1 100

Redundant21. We took the definition of Redundant21 from the paper by Inza et
al. [22].

Each numeric feature in the data was linearly normalized to the interval
[−1, 1]. The discrete features and the class labels were encoded with the usual
1-in-C coding if there are C > 2 values (one of the C outputs is set to 1 and the
rest to -1). Binary values were encoded as a single -1 or 1 value.

Instances with missing values in Credit-Australian were deleted. Following
the usual practice, the missing values in Pima-Diabetes (denoted with zeroes)
were not removed and were treated as if their values were meaningful. Fol-
lowing Lim et al. [23], the classes in Housing were obtained by discretizing
the attribute “mean value of owner-occupied homes” as follows: class = 1 if
log(median value) ≤ 9.84, class = 2 if 9.84 < log(median value) ≤ 10.075, and
class = 3 otherwise.

3.3 Evaluation Method

To evaluate the generalization accuracy of the pruning methods, we used 5 itera-
tions of 2-fold crossvalidation (5x2cv). In each iteration, the data were randomly
divided in halves. One half was input to the EAs. The best pruned network found
by the EA was tested on the other half of the data. The accuracy results pre-
sented in table 2 are the average and standard deviations of the ten tests.

To determine if the differences among the algorithms were statistically sig-

nificant, we used a combined F test proposed by Alpaydin [24]. Let p
(j)
i denote



Table 2. Mean accuracies found in the 5x2cv experiments. The best result is in bold

and a bullet (•) denotes a result that is significantly different from the best result at a
0.05 level of significance.

Domain Neural Net sGA cGA ecGA BOA

Breast Cancer 96.39 96.54 96.13 95.84 96.42
Cr-Australian 82.53• 85.78 85.75 86.18 85.84
Cr-German 70.12 70.68 70.92 70.30 70.14
Heart-Cleveland 58.17• 89.70 88.05 88.78 89.37
Housing 64.62• 75.36 67.11• 64.18• 76.24
Ionosphere 84.77 84.61 82.95 82.22 84.22
Iris 94.53 92.93 70.13• 67.73• 93.60
Kr-vs-kp 74.30• 92.56 93.53 93.81 93.85

Pima-Diabetes 73.30 74.84 75.91 76.04 75.88
Segmentation 44.16• 64.02 62.45 64.32 63.66
Sonar 73.17• 83.46 86.15 84.90 83.55
Vehicle 69.71• 78.20 76.73 76.64 78.62

Wine 95.16 94.15 89.88• 87.41• 93.48
Random21 91.70 94.04 94.08 94.03 94.09

Redundant21 91.75 95.77 95.82 95.82 95.72

the difference in the accuracy rates of two classifiers in fold j of the i-th iteration

of 5x2cv, p̄ = (p
(1)
i + p

(2)
i )/2 denote the mean, and s2

i = (p
(1)
i − p̄)2 + (p

(2)
i − p̄)2

the variance, then

f =

∑5
i=1

∑2
j=1

(

p
(j)
i

)2

2
∑5

i=1 s2
i

is approximately F distributed with 10 and 5 degrees of freedom, and we rejected
the null hypothesis that the two algorithms have the same error rate with 0.95
confidence if f > 4.74 [24]. The algorithms used the same data partitions and
started from identical initial populations.

4 Experiments

Table 2 has the average accuracies obtained with each method. The best observed
result in the table is highlighted in bold type, and those results that according
to the combined F test are significantly different from the best are marked with
a bullet (•).

These results suggest that, in some cases, the pruned networks have signifi-
cantly higher accuracies than the fully-connected networks. In general, pruning
does not seem to have harmful effects on the accuracy, except in two cases (Iris
and Wine) where the networks pruned with the cGA and ecGA perform signifi-
cantly worse than the fully-connected networks. In these experiments the pruned
networks were not retrained to “repair the damage” caused by pruning.



Pruning results in minor accuracy gains over the fully-connected networks,
except when the fully-connected nets performed poorly. In those cases, prun-
ing resulted in dramatic improvements. For example, the pruned networks on
Heart-Cleveland show improvements of 30% in accuracy, while in Kr-vs-kp and
Segmentation the improvements are ≈ 20%, and in Vehicle the improvements
are ≈ 10%.

One reason why pruning might improve the accuracy is because pruning
may eliminate the effect of irrelevant or redundant inputs. The experiments
with Random21 and Redundant21 were intended to explore this hypothesis.
In Random21, the pruning methods always selected weights corresponding to
the nine true inputs, but the algorithms always selected two or three weights
corresponding to random inputs. Since the performance does not seem to degrade
much, it seems likely that backpropagation had assigned low values to those
irrelevant weights. In Redundant21, the pruning methods did not eliminate the
redundant features. In fact, the pruned networks retained more than 20 of their
24 weights.

With respect to the size (number of weights) of the final networks, all algo-
rithms had similar results, successfully pruning between 30 and 50% of the total
weights (with the exception of Redundant 21 discussed above).

Table 3 shows that the sGA and the BOA finished in similar number of
generations (except for Credit-Australian and Heart-Cleveland), and were in
most cases the slowest algorithms. On most data sets, the ecGA finishes faster
than the other algorithms. However, the ecGA produced networks with inferior
accuracy than the other methods or the fully-connected networks in three cases
(Housing, Iris, and Wine). Despite the occasional inferior accuracies, it seems
that the ecGA is a good pruning method.

We performed additional experiments retraining the networks after pruning
for one, two, and five epochs of backpropagation (results not shown). In most
cases, retraining the networks improves the classification accuracy only slightly
over pruning without retraining (1–2%), and there does not appear to be a
significant advantage to retrain for more than one epoch. Among the data sets
we tested, the largest impact of retraining (using one epoch) was in Housing
with an increase of approximately 7% over pruning without retraing.

Retraining, however, had a large impact on the number of generations until
the algorithms terminated. In most cases, retraining for one epoch reduced the
generations by approximately 40%. Only in one case (sGA on Random21) the
number of generations increased (from 13.6 to 20). Retraining for more than
one epoch did not have a noticeable effect on the number of generations. In all
instances, retraining increased the total execution time considerably.

The population size of 1024 individuals was chosen because the DEAs require
a large population to estimate correctly the parameters of the models of selected
individuals. For the simple GAs, it is likely that 1024 individuals is too large a
population. In additional experiments, we set the sGA population size to 3

√
l,

where l is the size of the chromosomes (number of weights in the network). The
only significant difference in accuracy between the sGA with 1024 individuals



Table 3. Mean generations until termination. The best result is in bold and a bullet
(•) denotes a result that is significantly different from the best result at a 0.05 level of
significance.

Domain sGA cGA ecGA BOA

Breast Cancer 9.2• 6.7 7 10.9•
Credit-Australian 10 14 14.9 14.4
Credit-German 17.1 22.8• 21.3• 14.3

Heart-Cleveland 9.8 10.4 10.2 15.8•
Housing 19.4• 7.4 7.1 18.6•
Ionosphere 16.8 15.7 15.1 17.8
Iris 10.1• 5.9 5.9 10.1•
Kr-vs-kp 37.7• 28.8 26 35.7•
Pima-Diabetes 12.8 14.7 11.5 14.2
Segmentation 26• 18.1 17.4 24.9•
Sonar 14.5 20.5 19.3 16.9
Vehicle 26.1• 16.5 14.8 30.2•
Wine 12.5 9.9 9.4 11.7
Random21 13.6 9 9.1 14.8•
Redundant21 13.7• 8.5 8.5 16.1•

and the smaller population was in Iris (87.73% vs. 92.93%). There were no other
significant differences with the best pruning methods. Naturally, the execution
time was much shorter with the smaller populations. Therefore, for pruning
neural networks, it seems that the best recommendation is a simple GA with
small populations.

5 Conclusions

This paper presented experiments with four evolutionary algorithms applied to
neural network pruning. The experiments considered public-domain and artificial
data sets. With these data sets we found that there are few differences in the
accuracy of networks pruned by the four EAs, but that the extended compact
GA needs fewer generations to finish. However, we also found that, in a few
cases, the ecGA results in networks with lower accuracy than those obtained by
the other EAs or a fully-connected network.

We also found that retraining the pruned networks seems to improve the clas-
sification accuracy only very slightly but incurs in a much higher computational
cost. Therefore, it appears that retraining is only recommended in applications
where time is not critical.

Additional experiments revealed that a simple GA with a small population
can reach results that are not significantly difference from the best pruning
methods. Since the smaller populations result in much shorter execution times,
the simple GA seems to have an advantage over the other methods.

Future work should explore methods to improve the computational efficiency
of the algorithms to deal with much larger data sets. In particular, subsampling



the training sets and parallelizing the fitness evaluations seem like promising
alternatives. Another possible extension of this work is to prune entire units.
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