
Evaluating an Animated Pedagogical Agent

Antonija Mitrovic and Pramuditha Suraweera

Intelligent Computer Tutoring Group
Department of Computer Science, University of Canterbury

Private Bag 4800, Christchurch, New Zealand
tanja@cosc.canterbury.ac.nz, psu16@student.canterbury.ac.nz

Abstract. The paper presents SmartEgg, an animated pedagogical agent
developed for SQLT-Web, an intelligent SQL tutor on the Web. It has been
shown in previous studies that pedagogical agents have a significant
motivational impact on students. Our hypothesis was that even a very simple
and constrained agent, like SmartEgg, would enhance learning. We report on an
evaluation study that confirmed our hypothesis.

1 Introduction

Computers and Internet access are available in most schools today and offer a wealth
of information to students. However, the access to computers does not guarantee
effective learning, as many students lack the abilities to find their way through a vast
amount of accessible knowledge. Students need guidance, either from human or
computerized tutors. Recently, there have been several research projects that
concentrate on the development of animated pedagogical agents, lifelike creatures that
inhabit learning environments. Experiments have shown that such agents significantly
increase student motivation and perception of their learning. Here we present
SmartEgg, an animated pedagogical agent for SQLT-Web, and the initial evaluation
of it.

We have developed SQL-Tutor, a standalone system for the SQL database
language [9,10]. The system has been used by senior computer science students and
has been found easy to use, effective and enjoyable [11]. Recently, SQL-Tutor was
extended into a Web-enabled system, named SQLT-Web, and our initial experiences
show that students find it equally enjoyable and useful [12]. SQLT-Web has been
used only by local students. We plan to have SQLT-Web widely accessible soon, in
which case students outside our university may find some aspects of the system more
difficult to grasp. Therefore, we have started exploring possibilities of providing more
feedback, and providing it in a manner that would motivate students.

We discuss animated pedagogical agents in section 2. Section 3 introduces SQL-
Tutor and the Web-enabled version of it. We present SmartEgg in section 4, focusing
on its implementation, behaviour space and communication with SQLT-Web. Section
5 presents the results of the initial evaluation, followed by discussion and conclusions.

2 Animated Pedagogical Agents

Animated pedagogical agents are animated characters that support student learning.
They broaden the communication channel by using emotive facial expressions and
body movements, which are very appealing to students. Pedagogical agents are
extremely important for student motivation, as they provide advice and
encouragement, empathize with students, and increase the credibility and utility of a
system. Several studies have investigated the affective impact of agents on student
learning and revealed the persona effect, “which is that the presence of a lifelike
character in an interactive learning environment - even one that is not expressive - can
have a strong positive effect on student's perception of their learning experience” [6].
Experiments have shown that students are much more motivated when the agent is
present, tend to interact more frequently and find agents very helpful, credible and
entertaining.

Animated pedagogical agents may be presented as cartoon-style drawings, real
video or 3D models. Most agents are fully bodied, and use facial expressions and
body movements to communicate emotions. An agent may exist within the learning
environment, i.e. be immersed into the learning environment, move through it and
manipulate objects within. It is also possible for an agent to exist in a separate
window. Agents may adhere to the laws of physics, or may be stylised to emphasize
emotions. Agents’ behaviour may be specified off-line, manually. Ideally, behaviour
should be generated online, dynamically, so as to correspond to the changes in the
learning environment.

Herman the Bug [7] is an animated pedagogical agent for the Design-A-Plant
learning environment, in which children learn about plant anatomy and physiology by
designing plants for specific environments. Herman is a 3D model, immersed into the
learning environment, capable of performing engaging actions, such as diving into
plant roots, bungee jumping, shrinking and expanding.

Adele (Agent for Distance Education – Light Edition) [5] is an autonomous agent
that facilitates distance learning. The agent is used with a simulated environment in
which students solve problems. Adele consists of three components: a reasoning
engine, which monitors student’s actions and generates appropriate pedagogical
responses to them, an animated persona that runs in a separate window, and a session
manager, which enables multiple students to use the system concurrently.

Steve (Soar Training Expert for Virtual Environments) [4] is a human-like
animated agent that cohabits a virtual reality environment and helps students learn to
perform procedures. Being a 3D model immersed in a simulation, Steve can perform
not only the pedagogical functions common in intelligent educational systems, but
also can demonstrate actions by manipulating objects in the simulated environment.
Multiple Steve agents can inhabit the environment, thus giving a possibility to teach
team tasks.

PPP Persona [3] guides the learner through Web-based material by pointing to
important elements of Web pages, and providing additional auditory comments. There
are five different characters, three of which are video-based, and the remaining two
are cartoon characters. AlgeBrain [1] is a Web-based intelligent tutoring system that
teaches students how to solve algebraic equations. The pedagogical agent used is a
cartoon-like drawing that appears in a separate window.

Three architectures have emerged for online generation of agent behaviour [4]. The
behaviour sequencing approach is based on a behaviour space, which is a library of
predefined primitives (actions, speech elements etc). In an instructional session, the
behaviour of an agent is assembled on-line from the primitives, by a behaviour
sequencing engine. The behaviour space of Herman the Bug consists of 30 animated
segments of the agent performing various actions, and of 160 audio clips and songs
[6]. These actions are combined at runtime by the emotive-kinaesthetic behaviour
sequencing engine [7].

The second architecture is the layered generative approach, where animations are
generated in real time. This is the architecture Steve is based on, and it is especially
suitable for immersive environments, but it requires a much higher rendering
computation load. Finally, the state machine compilation approach composes
behaviour out of primitives, but generates a state machine, so that the behaviour of an
agent can adapt at run time to student actions. Andre, Rist and Muller [2] describe a
presentation planner, which develops a navigation graph from given goals. A
navigation graph contains all presentation units with associated durations and
transitional information.

3 An Intelligent SQL Tutor

SQL-Tutor is an Intelligent Teaching System (ITS) that helps students to learn SQL
[9,10]. It is designed as a problem-solving environment and as such is not intended to
replace classroom instruction, but to complement it. We assume that students are
already familiar with the database theory and fundamentals of SQL. Students work on
their own as much as possible and the system intervenes when the student is stuck or
asks for help.

The standalone version of the system consists of an interface, a pedagogical
module that determines the timing and content of pedagogical actions, and a student
modeller that analyses student answers. There is no domain module, as usual in ITSs,
which can solve the problem being posed to a student. The system contains
definitions of several databases, implemented on the RDBMS used in the lab. SQL-
Tutor also contains a set of problems for specified databases and the ideal solutions to
them. In order to be able to check the correctness of the student's solution, SQL-Tutor
uses domain knowledge represented in form of constraints, as described in [11].
Student solutions are compared to the ideal solutions and the domain knowledge.

At the beginning of a session, SQL-Tutor selects a problem for the student to work
on. When the student enters the solution, the pedagogical module (PM) sends it to the
student modeller, which analyses the solution, identifies mistakes (if there are any)
and updates the student model appropriately. On the basis of the student model, PM
generates an appropriate pedagogical action (i.e. feedback). When the current problem
is solved, or the student requires a new problem to work on, the pedagogical module
selects an appropriate problem on the basis of the student model.

SQL-Tutor uses Constraint-Based Modelling (CBM) [13] to form models of its
students. CBM is a computationally efficient student modelling approach, which
reduces the complex task of inducing student models to simple pattern matching. The

Fig. 1: Introduction to SmartEgg

strength of CBM lies in domain knowledge, represented in the form of state
constraints, which contain the basic principles of a domain.

We have recently developed SQLT-Web, a Web-enabled version of SQL-Tutor
[12]. The basic philosophy remains the same, but SQLT-Web is capable of dealing
with multiple students. It has been developed in a programmable CL-HTTP Web
server [8]. All pedagogical functions (student modelling, generation of feedback and
selection of problems) are performed on the server side. The system communicates to
the student's Web browser by generating HTML pages dynamically. The server stores
all student models at the same place, thus allowing a student to access the system
from any machine.

4 SmartEgg: an Animated Pedagogical Agent for SQLT-Web

SmartEgg is an animated pedagogical agent developed by our group for SQLT-Web.
It is a cartoon-like character that gives feedback on student actions. As the agent was
developed for a fully functional ITS, it was possible to have SQLT-Web to generate
student models and appropriate feedback. Therefore, our agent has to perform much
simpler tasks in comparison to agents discussed in the previous section.

The agent explains system's functions, provides feedback on student's actions and
informs students about additional ways of getting help or background information.

The project is still in its initial phases,
and so far the agent presents all
information in textual form. In the later
phases, we plan to broaden the types of
available feedback, including audio,
and to extend agent’s functionality.

SmartEgg is implemented as a Java
applet, by using the animation toolkit
of Adele [5]. An appropriate character
was developed (illustrated in figure 1),
and thirty-eight frames were sketched
to define the gestures. The animation
toolkit swaps frames and uses
techniques such as morphing to
perform animations. Currently, there
are 14 gestures that SmartEgg can
perform, requiring two to five frames
each. The library of gestures consists of
presentation gestures (e.g. pointing),
reactive gestures (used to present
feedback) and idle-time gestures (e.g.
waiting for a solution).

The required behaviours were
developed next. Behaviour is a
sequence of several gestures. The
behaviours of our agent are pre-

specified, and not dynamically generated. The SmartEggs’s behaviour space consists
of three main categories of behaviours: introductory, explanatory and congratulatory.
Introductory behaviours accompany initial interactions, introducing the system’s
functions and describing levels of feedback to new users. Feedback messages from
SQLT-Web are delivered to students using explanatory behaviours. For each type of
feedback, there is a set of behaviours the pedagogical agent can perform.
Congratulatory behaviours are an attempt to motivate users. SmartEgg congratulates
the student when a correct answer is submitted and displays disappointment after an
incorrect submission.

SmartEgg follows a predefined set of rules when selecting an appropriate
behaviour from its behaviour space. This procedure is based on the student’s
interactions with SQLT-Web. Each distinct state (e.g. login, solving a problem,
logout) is assigned three different behaviours to ensure variation in the agent’s
appearance.

Fig. 2: Architecture of SQLT-Web with pedagogical agent

Finally, the applet persona was incorporated with SQLT-Web. The pedagogical
agent’s Java applet and the server are required to exchange messages in order for the
agent to receive the feedback text and know the actions performed by the user. This
was achieved by implementing a Java socket connection between the server and the
applet. The agent consists of a dedicated thread of execution that waits to receive
messages from the server. For each received message, the agent selects an appropriate
behaviour by using the behaviour selection rules, which is then carried out by the
animated persona. Figure 2 illustrates the architecture of SQLT-Web and the
pedagogical agent.

SQLT-Web
(CL HTTP server)

Pedagogical
agent (applet)

SQLT-Web
user

interface
page

Internet

Socket Communicator

User’s Web browser

5 Evaluation of SmartEgg

Our goal when developing SmartEgg was to increase the motivation of students by
presenting feedback in an engaging way. We started with a hypothesis that the
existence of a simple animated pedagogical agent would enhance students’ perception
of the system (as reflected in the students’ subjective ratings of the system), and
would support learning, resulting in better understanding and application of the
underlying knowledge. Both gains would come from the motivational impact of the
agent. Earlier studies [1,3,4,7] have shown that pedagogical agents have such effects
on students; however, in these cases, the agents were much more sophisticated than
SmartEgg. Here we set to determine whether even a very simple and constrained
agent would enhance learning.

5.1 Experimental Setting

In October 1999 we performed an evaluation study, which involved second year
students enrolled in an introductory database course. The students used the system in
a 2-hour lab session and were randomly assigned to a version of the system with and
without the agent (the agent and the control group respectively). SQLT-Web and
SmartEgg conveyed exactly the same information to the students, as we wanted to
determine the impact of the agent’s existence on students’ learning.

The study started with a pre-test, consisting of three multi-choice questions. After
that, students interacted with the system. The problems and the order in which they
were presented were not identical, as students were allowed to select problems by
themselves, or let the system to select appropriate problems based on their student
models. After working with the system, students completed a post-test consisting of
three multi-choice questions of the same difficulty as the ones in the pre-test. They
also filled a user questionnaire, the purpose of which was to evaluate the students'
perception of SmartEgg and SQLT-Web.

5.2 System/Agent Assessment

The questionnaire consisted of 16 questions based on the Likert scale with five
responses ranging from very good (5) to very poor (1). Students were also allowed to
put free-form responses. Out of 26 students who participated in the study, 22
completed questionnaires.

The analysis of the responses revealed that the students liked SmartEgg. When
asked to rate how much they enjoyed the system, the average rating for the agent
group was 4.5 and for the control group 3.83 (Table 1). The majority (60%) of the
agent group students chose option 5, compared to only 33% of the control group. The
difference is significant (t=1.79, p=.03).

Both groups were equally comfortable with the interface, in the terms of how much
time it took to learn it, and the ease of using the interface. The students were also
asked to rate the amount learnt from the system. Both groups chose similar values, the
means being 3.8 for the agent group and 3.92 for the control group. This result was
expected as both groups received identical feedback.

However, when asked to rate the usefulness of feedback, the mean for the agent
group was 4.8 and for the control group was 4.09. The majority (80%) of the students
who used the agent rated the system as very useful (option 5), and only 42% of the
control group chose the same option. As both versions of the system presented the
same problem-based messages, it is clear from the findings that the students who used
the agent found it easier to comprehend the feedback from the system. The difference
in rating the usefulness of feedback is significant (t=2.15, p=.015). The written
comments were also very positive.

 Mean Standard deviation

Agent
group

Control
group

Agent
group

 Control
group

Enjoyment rating 4.50 3.83 0.71 1.03
Time to learn interface (min) 11.00 10.83 10.22 9.25
Ease of using the interface 4.10 3.73 0.74 1.01
Amount learnt 3.80 3.92 0.79 0.67

Usefulness of feedback 4.80 4.09 0.42 1.04

Table 1: Mean responses for system/agent assessment

5.3 Learning Efficiency and Effectiveness

All actions students performed in the study were logged, and later used to analyse the
effect of the agent on learning (Table 2). The students in the agent group spent 55.9
minutes interacting with the system, and the control group subjects averaged 49.6
minutes. As the agent group spent more time with the system, they attempted and
solved more problems.

The agent group took fewer attempts to solve problems (30.9 compared to 32.56
attempt needed by the control group). In order to establish whether the knowledge
level of the students may have affected this, we looked at the proportion of problems
that were solved in the first attempt and found them to be similar for both the groups
(5.1 for the agent group and 4.56 for the control group). This finding was consistent
with our expectations, as the students did not get any direct help from the system
before submitting initial solutions. Therefore, the students in both groups have
comparable knowledge of SQL (this is also justified by the pre-test performance,
discussed in section 5.4). Furthermore, students in both groups required a similar
number of attempts to solve problems that could not be solved in the first attempt
(when problem-specific hints were provided). The number of problems successfully
solved per unit of time was similar for both groups. Students who used the agent
recorded on average 0.27 correct answers per minute and the control group managed
0.22.

 Mean Standard dev.

 Agent Control Agent Control

Total interaction time (mins) 55.90 49.63 17.30 26.70
No. of attempted problems 14.00 11.56 5.27 6.49
No. of solved problems 11.60 10.94 4.35 6.36
Total no. of attempts to solve the problems 30.90 32.56 14.13 23.97
Problems solved in the first attempt 5.10 4.56 2.60 2.73
Problems solved per time (problem/min) 0.22 0.27 0.07 0.21
Attempts to solve problems that could not be 2.90 2.91 1.61 1.34
solved in the first attempt (attempts/problem)

Table 2: Means of interaction analyses

The average number of attempts taken to solve problems that were not solved in
the first attempt was very similar: the agent group required 2.90 and the control group
2.91 attempts. As both versions of the system offered the same feedback, students
from both groups required the same number of attempts.

In order to establish the effect of the agent on the student’s learning over time, we
plotted the average number of attempts taken to solve the i th problem for each group.
To reduce individual bias, the problems solved by less than 50% of the participating
population were discarded (Fig. 3). Although no substantial trends can be seen, the
agent group required 0.2 fewer attempts to solve each problem than the control group.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

nth Problem

A
tte

m
pt

s

Agent
group

Agent
group
mean

Control
group

Control
group
mean

2.74

2.98

Fig. 3: The mean number of attempts taken to solve the i th problem

5.4 Pre- and Post-Tests

Pre- and post-tests consisted of three multi-choice questions each, of comparable
complexity. The marks allocated to questions were 1, 5 and 1 respectively. Nine out
of ten students in the agent group and fourteen out of sixteen in the control group
submitted valid pre-tests, the results of which are given in Table 3. The mean scores
in the pre-test for the two groups are very close, suggesting that the two groups
contained students of comparable knowledge.

Although participation in the pre-test was high, only four students from both
groups sat the post-test1. Three of these students had used the agent, and a definite
increase in their performance and confidence can be seen from the results of the post-
test (4.33 and 2 for the agent and control group respectively). However, as the
numbers involved are small, unbiased comparisons on the mean performances cannot
be made.

Question Agent group Control group

1 0.33 0.14
2 2.56 2.50
3 0.67 0.71
Total 3.56 3.36

Table 3. Means for the pre-test

6 Discussion and Future Work

This paper presented SmartEgg, an animated pedagogical agent for SQLT-Web, an
intelligent SQL tutor on the Web. Previous works on pedagogical agents have shown
that they significantly increase motivation, resulting in longer interaction times and
higher quality of learning.

In contrast to other discussed pedagogical agents, which required large teams of
animators, pedagogues and programmers, SmartEgg was developed by a team of two
people in a short period of time. Our initial hypothesis was that even a very simple
agent would reveal the persona effect. In order to test the hypothesis, we performed
an initial evaluation study in which two groups of students interacted with SQLT-
Web and SmartEgg in a two-hour session. The students sat pre- and post-tests; all
their actions were logged and finally the students filled a user questionnaire. Various
analyses of the data collected in the evaluation study were performed, which showed
a significant increase of motivation in the agent group. The students who interacted
with the agent spent more time with the system, and solved more problems in fewer
attempts than the students in the control group. We acknowledge the low number of
students involved in the study, and will perform a much wider study to confirm the
results from this initial evaluation.

1 Some students did not log off properly, and have not even seen the post-test, which was

administered on a separate Web page.

At the moment, SmartEgg provides textual information only. We plan to add
verbal comments in the next phase, as it has been shown that more expressive agents
are perceived to have greater utility and clarity [6]. Also, we plan to develop dynamic
generation of behaviours. The behaviours would depend on the context of the
feedback message, thus enabling SmartEgg to make a higher impact on students.
Another future plan includes using the agent to provide support for self-explanation.
This support would be in terms of dialogues with a student, where the agent prompts
questions to guide the student.

Acknowledgements

This work was supported partly by the University of Canterbury research grant U6242. We are
grateful to the Centre for Advanced Research in Technology for Education (CARTE) for
providing the source code for the animation toolkit of Adele. We appreciated the stimulating
environment in ICTG and the comments of its members. Our thanks go to Nenad Govedarovic
for the initial drawing of SmartEgg, and the COSC205 students for their time and suggestions.

References
1. Alpert, S., Singley, M., Fairweather, P. Deploying Intelligent Tutors on the Web: an

Architecture and an Example. Int. J. AI in Education, 10 (1999) 183-197.
2. Andre, E., Rist, T., Muller, J. WebPersona: a Life-Like Presentation Agent for Educational

Applications on the WWW (1997). P. Brusilovsky, K. Nakabayashi, S. Ritter (eds)
Proceedings of workshop on Intelligent Educational Systems on the WWW, AI-ED’97.

3. Andre, E., Rist, T., Muller, J. WebPersona: a Life-Like Presentation Agent for the World-
Wide Web. (1998). Knowledge-based Systems, 11(1) (1998), 25-36.

4. Johnson, W.L. Pedagogical Agents. Invited paper, ICCE’99 (1999).
5. Johnson, W.L., Shaw, E., Ganeshan, R. Pedagogical Agents on the Web. Workshop on

WWW-based Tutoring, ITS’98 (1998).
6. Lester, J., Converse, S., Kahler, S., Barlow, S., Stone, B., Bhogal, R. The persona effect:

Affective Impact of Animated Pedagogical Agents, Proc. CHI'97 (1997) 359-366.
7. Lester, J., Towns, S., FitzGerald, P. Achieving Affective Impact: Visual Emotive

Communication in Lifelike Pedagogical Agents (1999). Int. J. AI in Education. 10 (1999).
8. Mallery, J.C. A Common LISP Hypermedia Server. Proc. 1st Int. Conf. On the World

Wide Web (1994).
9. Mitrovic, A. A Knowledge-Based Teaching System for SQL. Proc. ED-MEDIA'98, T.

Ottmann, I. Tomek (eds.) (1998) 1027-1032.
10. Mitrovic, A. Experiences in Implementing Constraint-Based Modeling in SQL-Tutor.

Proc. ITS'98 (1998) 414-423.
11. Mitrovic, A., Ohlsson, S. Evaluation of a constraint-based tutor for a database language,

Int. J. Artificial Intelligence in Education, 10 (3-4) (1999).
12. Mitrovic, A., Hausler, K. An Intelligent SQL Tutor on the Web. Tech. Report TR-COSC

04/99, Computer Science Department, University of Canterbury (1999).
13. Ohlsson, S.: Constraint--based Student Modeling. In: Greer, J.E., McCalla, G.I. (eds.):

Student Modeling: the Key to Individualized Knowledge--based Instruction. NATO ASI
Series, Vol. 125. Springer-Verlag, (1994) 167-189.

