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Abstract

We present further results on the elucationa effediveness of an intelligent
computer tutor that helps dudents lean eff edively from examples by coaching
self-explanation — the process of explaining to oneself an example worked-out
solution. An ealier analysis of the results from a formative evaluation of the
system provided suggestive evidencethat it could improve students' leaning. In
this paper, we present additional results derived from a more mmprehensive
analysis of the experimental data. They provide astronger indicaion of the
system’s effediveness and suggest genera guidelines for effedive suppat of
self-explanation during example studying.

1 Introduction

The reseach presented in this paper represents a step toward exploring innovative
ways in which computers can enhance elucation and learning. While most intelligent
tutoring systems support students during problem solving and teach domain spedfic
skills, we have devised a @mputational framework that supports leaning from
examples and that coaches the generd leaning skill known as slf-explanaion -
generating explanations and justifications to aesdlf to clarify an example solution
Severa studies show that self-explanation greatly improves leaning from examples
(for overviews of these studies e [4] and [10]) and that coaching self-explanation
can extend these benefits ([3], [4]). Our framework, known as the SE-Coach, aims to
provide the individualized monitoring and guidance to self-explanation that has been
proven so beneficial when administered by human tutors. It has been implemented
and tested within Andes [11], a tutoring system that helps gudents lean Newtonian
physics through both exampl e studying and problem solving.

Other tutoring systems rely on examples as instructional means, but they use them
to support students as they solve problems, na as a spedfic leaning phase prior to
and complementary to probllem solving. These systems present students with reevant
examples as they are solving problems and help students understand the cnnedion
between the example and the problems [12], [7], [1]. However, none of these systems



monitor how students gudy and understand the presented examples. Moreover, the
systems themselves, rather than the students, generate explanations to help the
students understand the examples. The Geometry Tutor [2] explicitly encourages
students to explain the solution steps they have used to build geometry prodss, in
terms of geometry axioms. However, the explanations are generated during problem
solving and consist simply of seleding an item from a list of geometry axioms. The
student does not have to explain the antent of the aiom. Furthermore, the tutor
makes the student explain eat solution step, instead of trying to assess if some
explanations may be more beneficial for the student than athers.

Unlike the systems above, the SE-Coach includes an interface designed to
encourage sportaneous, constructive self-explanation of examples. It aso includes a
help module that explicitly elicits further self-explanation tailored to a student’s
needs, as asessd by the SE-Coach probebilistic student model, when the interface
scefalding is not sufficient to overcome the natura reticence to self-explain tha
many students sow [4], [10].

Sdf-explanation is a learning pocess whose underlying mechanisms are still
unclea and under investigation. Since the SE-Coach is built on existing hypotheses
about the features that make self-explanation effective for leaning, an acarate
evaluation of its effediveness may dlow us to shed light on the validity of the
hypatheses and possbly suggest new ones. In [6], we presented initial results of a
formal evaluation that we performed to test the usability and effediveness of the
system. These results indicaed that the SE-Coadh's interface is easy to use and
generaly effedive in stimulating self-explanation. They aso provided initia support
on the SE-Coadh's educationa effediveness In this paper, we present a more detail ed
analysis of the eperimenta data that reveds a significait interadion between
experimental condition and the learning stage in which students used the system, and
provides insights on how the SE-Coach can more dfedively bring students to
constructively learn from examples.

2 Overview of the System

The SE-Coadh's interface includes three different levels of scaffolding for self-
explanation, to acommodate the varied propensity to sdf-explain that different
students have, so as to provide eab student with the minimum intervention sufficient
to trigger constructive self-explanation.

The first level of scafolding is given by a masking interfacethat presents different
parts of the example covered by grey boxes (seeFigure 1). In order to read the text or
graphics hidden under a box, the student must move the mouse pointer over it. The
faa that not al the example parts are visible & once helps sudents focus attention and
reflect on indvidua example parts, and alows the SE-Coach to track student’s
atention [6]. The second level of scafading is provided by explicit prompts to self-
explain. These prompts go from a generic reminder to self-explain, that appeas when
a student uncovers an example part, to more spedfic prompts for self-explanaions
that have been shown to correlate with leaning in the self-explanation studies: (a)
justify solution steps in terms of domain principles; (b) relate solution steps to goals
in the underlying solution pan.
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Figure 1: A physics example (l€ft), asit is presented in the masking interface(right)

The third level of scafolding comsists of menu-based tods designed to provide
constructive but controllable ways to generate the @ove self-explanaions, to help
those students that would be unable to properly self-explain if left to their own
devices [10]. If a student seleds the prompt to self-explain in terms of domain
principles (“This is true because...”), a Rule Browser is displayed in the right half of
the window (see Figure 2a), while if the student selects the prompt to sdf-explain in
terms of the solution pan (“The purpose of this gep is..”), a Plan Browser is
adivated instea.
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Figure 2: (a) Seledions inthe Rule Browser and (b) Template filling

The rule browser contains a hierarchy of physics rules, refleding the cntent of the
SE-Coadh's knowledge base. The student can browse the rule hierarchy to find arule
that justifies the airrently uncovered part. The SE-Coach will use agreen check or a
red crossto provide feadbadk onthe corrednessof the student's sledion (seeFigure
2a). To explain more &out the adua content of a rule, the student can click on the
“Templae” button in the rule browser. A dialog box comes up (see Figure 2b) with a
partia definition of the rule that the student can complete by selecting appropriate




fillers from available pul down menus. The SE-Coach gives immediate feedbadk on
the student’s sledions.

The plan browser is similar to the rule browser, but it displays a hierarchicd tree
representing the solution plan for a particular example instead of the SE-Coadh's
physics rules. The student explains the role of the uncovered part by seleding in the
plan hierarchy the step that most closely mativates the fad.

The SE-Coach includes a probabilistic student model based on a Bayesian retwork.
The Bayesian network comprises a moddl of corred self-explanation for the airrent
example, probabilities estimating the student's physics knowledge axd nodes
representing the student’s reading and self-explanation adions. At any time during the
interadion, probabilities in the Bayesian retwork assess how well the student
understands the example solution and how the student's knowledge dhanges as a
result of the interadion with the system [5]. Using this assesanent, the SE-Coach
prompts the student to generate further sef-explanation to fix gaps in the student’s
example understand ng.

Initialy, self-explanaion is voluntary. However, if a student tries to close the
example when the student model indicates that there ae till some lines left to self-
explain, then the SE-Coach generates a warning and colors pink the crresponding
masking interface boxes. It aso provides more diredive alvice & of what interface
tod should be used to better self-explain ead line. The SE-Coadh's tutoria
interventions represent a fourth, stronger level of scafading for self-explanation,
direded to help those students that do nd self-explain because they tend to
overestimate their understanding [4].

3 Empirical Evaluation of the SE-Coach

To test the system’s effectiveness for leaning, we performed a formal study with 56
coll ege students. The SE-Coach does not provide any introductory physics instruction,
becaise it is meant to complement regular classoom adivities. Therefore, an
evaluation of the SE-Coach requires subjeds who have the right level of domain
knowledge for using the system. Students generally benefit more from examples when
they are studying a new topic, whereas as the students' knowledge improves, problem
solving becomes more dfedive for leaning [8]. Hence to evaduate the SE-Coach
adequately, subjeds need to have enough knowledge to understand the topic of the
examples, but not so much knowledge to find the examples not worthy of attention.
The ided evaluation setting for the SE-Coach would be in the context of an
introductory physics course, where it is posshle to control when students are realy to
study examples on a new topic. Unfortunately, we wuld not coordinate the SE-
Coad's evaluation with a spedfic physics course. Insteal, we @nducted the study in
our laboratory, with students who were taking introductory physics classes at four
different colleges: the University of Pittsburgh (20 students), Carnegie Mellon
University (14 students), Community College of Allegheny County (5 students) and
U.S. Navad Academy (17 students). The best we could do to get subjeds at
comparable leaning stages was to run the subjeds after their first classon Newton's
Second Law and before they took a dasstest on the topic.

The one-sesson study comprised: 1) solving four pre-test problems on Newton's
Second Law; 2) studying examples on Newton's Second Law with the system; 3)



solving post-test problems equivalent but not identicd to the pre-test ones; The study
had two conditions. In the experimental (SE) condition, 29 students gudied examples
with the complete SE-Coach. In the control condition, 27 students dudied examples
with the masking interface ad Plan Browser only'. They had no accessto the Rule
Browser and Templates, nor feedbad or coaching.

3.1. Effectiveness of the SE-Coach

As we reparted in [6], the andysis of the log data file from the study shows that the
SE-Coadh's interface is easy to use and is quite successful at stimulating self-
explanation. The gains sores between post-test and pretest were higher for the SE
condition, athough the difference between gain scores of the two conditions was not
statisticaly significant. Since then, we have sought to better understand the reason
behind the aowe outcome by restricting the anadysis to the subgroups of subjeds
coming from different colleges. We found that the SE condition d CMU (Carnegie
Méellon) and CCAC (Community College of Allegheny County) students performed
better than the crtrol condition (see Figure 3). The performance difference as
measured by an Analysis of Covariance with post-test as dependent variable, pre-test
as covariate and condition as main effed, was datiticdly significant for CMU
students (p < 0.04) and nealy significant (p = 0.0576) for CCAC students. In cortrast,
in the Pitt (Univ. of Pittsburgh) and USNA (U.S. Naval Academy) subgroups,
students in the control condition performed dightly better than students in the SE
condition (seeFigure 3), athough the differencewas not statisticaly significant
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Figure 3: Gains <ores for the four Figure 4: pretest scores for the four
subgroups subgroups

The @mmondity of behavior between CMU and CACC students is quite
surprising, because CMU and CCAC are supposed to be, respedivdy, the best and the
worst among the four colleges in the study. This ranking is confirmed by the pretest
scores $own in Figure 4. The difference in pretest performance between CMU and
CCAC is the only one that approaches significance (p = 0.0561), among the pretest
performances of the four groups.

1 We et the cntrol students accessthe Plan Browser because introductory physics courses usually do na
address slution danning, therefore cntrol students would have had too much o adisadvantage if they
had nat been able to seewhat a solution dan is throughthe Plan Browser.



To understand what may have caused this different learning behavior, we ll apsed
and andlyzed the data in two subgroups with the same leaning outcome, CMU-
CCAC and Pitt-USNA. Within the CMU-CCAC group, students in the SE condition
performed significantly better than students in the cntrol condition, after covarying
out the pretest (p = 0.021). Pitt-USNA students in the cntrol condition performed
dightly better than those in the SE condition, but the difference is not statisticdly
significant (p > 0.2).

3.2. PossibleDifferencesin the Student Populations

One possble explanation for the above results could be adifference in physics and
badkground knowledge between the two subgroups of CMU-CCAC and Pitt-USNA
students. However, an ANCOVA with post-test as dependent variable and subgroup
and condition as main effeds, shows that there is gtill a significent interadion (p <
0.01) of subgroup with condition after covarying out pretest only and both pretest and
SAT scores. Although 10 subjeds are excluded from the latter ANCOVA (we did na
have these subjeds SAT scores), these data still provide a strong indication that
physics and badground krowledge do not explain the different performance of the
two subgroups.

A semnd explanation for the different leaning behavior of the CMU-CCAC and
Pitt-USNA subgroups could be that subjeds in the two subgroups used the system
differently. The ore thing that CMU and CCAC have in common, and that
distinguishes them from Pitt and USNA students, is that they start the semester more
than a week later. Therefore, dthough al the subjects participated to the experiment
after they had their ledures on Newton' s laws and before they took a classtest on the
topic, Pitt and USNA subjeds were dhea in the amurse schedule and had likely spent
more time on Newton' s laws than CMU and CCAC subjeds when they participated to
the study. Our data show that this did not significantly influence the pretest

performance of the two subgroups.

However, it may have caised the students

in the two subgroups to have a different
Hemu-ccac]  atitude toward the example study task we
Dpitt-usna made them perform.

If we anayse the leaning patterns of the
two subgroups within each cordition, we
find that in the SE condition, CMU-CCAC
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| |

0,

control SE students leaned more than Pitt-USNA
Figure5: gains soresof thetwo subgroup ~ Students  (see figure 5), athough the
in ead condition difference is not statisticdly significant (p

> 0.1). In the Control condition, Pitt-
USNA students leaned significantly more than CMU-CCAC students (p < 0.03).
These outcomes could be due to two reasons:
— In the SE condition, Pitt-USNA students did not use the SE-Coach as extensively
and effedively as the CMU-CCAC students did.
— In the Contral condition, Pitt-USNA students self-explained spontanecusly more
that the CMU-CCAC students did.



We will now verify these two hypatheses by comparing the log data of the two
subgroups within the SE and the antrol condition

Log data analysis of the two subgroups within the SE condition

To test whether CMU-CCAC students used the SE-Coadh better than the Pitt-USNA
students in the SE condition, we cmpared time on task, statistics describing how
subjeds used the interface self-explanation tods (Rule Browser, Plan Browser and
Templates) and how they readed to the SE-Coadh' s adviceto further self-explain.

Rule Browser CMU-CCAC (12) Pitt-USNA (17) p
Initi ated 63.6% 61.4% 0.8
Correct 88% 86% 0.6
Attempts before rrect 11 13 0.35
Max # attempts 7.8 10.2 0.45
Attempts before éandon 4.3 37 0.7
Template CMU-CCAC (12) Pitt-USNA (17) p
Initi ated 57.6% 53.8% 0.7
Correct 97.2% 96.8% 0.8
Attempts before rrect 0.47 0.51 0.8
Max # attempts 2.2 2.7 0.3
Attempts before ébandon 3 0.15 0.011
Plan Browser CMU-CCAC (12) Pitt-USNA (17) p
Initiated 36.2% 45% 0.55
Correct 92% 81% 0.15
Attempts before rrect 1 1 0.9
Max # attempts 3.9 38 0.96
Attempts before ébandon 14 11 0.77

Table 1: Statistics oninterfacetods usage for CMU-CCAC and Pitt-USNA students

CMU-CCAC (12) | Pitt-USNA (17) p
Rule prompts fol lowed 41% 3% 0.8
Plan prompts fol lowed 50% 36% 0.36
Read promptsfoll owed 31% 35% 0.88

Table 2: SE-Coad prompts statistics for CMU-CCAC and Pitt-USNA students

For each interface tod, we cmputed the following data summearies (see Table 1):
Initiated: percentage of the eplanations tha students initiated out of al the
explanations that could be generated with that tod for the available examples.
Corred: percentage of the initiated explanations that were generated corredly.
Attempts before rred: average number of atempts the students made before
adhieving a @rred self-explanation. An attempt is the submisson of an incorrect self-
explanation. Max # attempts. average maximum number of attempts neeled to
adhieve a corred self-explanation. Attempts before abandon: average number of
attempts before dandoning a self-explanation. We dso computed how many of the
different prompts generated during the SE-Coadh tutoria interventions (prompts to



self-explain using the Rule Browser, the Plan Browser or by reading more caefully)
the students acualy followed (see Table 2). There is no statisticdly significant
difference in the average time on task for the two subgroups (p > 0.1). The only
significant difference in the way CMU-CCAC and Pitt-USNA students used the
system in the SE condition is that CMU-CCAC students performed a significantly
higher number of attempts before giving up on a Template explanation (see Table 1,
Template data). This suggests that the CMU-CCAC students had a higher level of
moativation to lean from the SE-Coach self-explanation tods, consistently with the
fad that students in the CMU-CCAC group had started studying Newton' s Laws later
than Pitt-USNA students and thus they were likely more willing to put substantial
effort in leaning from examples on the topic.

The CMU-CCAC students’ higher level of mativation cen explain why they learned
more from the SE-Coadh than the Pitt-USNA students did, although in generd they
did nat use the system nore eaily and extensively (as Table 1 and Table 2 show).
Sdeding items in the browsers and filling templates does not necessarily trigger
constructive leaning if students do not refled on what they are doing Inded, if
students are not motivated to put substantia effort in studying examples, the adions
of browsing and Template filling may ad as distraders from leaning. Students may
concentrate their attention on seleding items to get positive feedbadk on ther
interfaae actions, but not acdually reflea on the physics behind the adions and behind
the worked out solution. Thus, we ague that CMU-CCAC students in the SE
condition leaned more from the same sdf-explanaion adions than Pitt-USNA
students because, being more mativated, they reasoned more wnstructively on their
sdlf-explanation adions and on the physics underlying them.

This argument is supported by the rrelation between post-test scores and the
number of rules that readed high probability in the student model. The correlation is
very low (r < 0.1) for Pitt-USNA students and it is higher (r = 0.33) for the CMU-
CCAC students. Since the probebilities in the student model are driven upward by
corred self-explanations conducted on the SE-Coadh’s interface, the high correlation
of the CMU-CCAC group suggests that their self-explanations drove their
understanding upward just as they drove the model’s probabilities upward, whereas
the low correlation of the Pitt-USNA group suggests that their learning was
independent of their use of the SE-Coadh’s =i f-explanation tod's.

Log data analysis of the two subgroups within the control condition

The hypothesis that the leaning o Pitt-USNA students in the cntrol condition is due
to spontaneous wlf-explanaion is not essy to werify, becaise in this condtion
students could nat expresstheir self-explanation through the SE-Coach. The only log
data file that could indiredly indicate self-explanation in the control condition are: (1)
average number of multiple acesses to example lines; (2) standard deviation of the
above measure; (3) average time spent on each example ling; (4) standard deviation of
the aove; (5) time on task; (6) number of accesses to the Plan Browser; (7) number
of seledionsin the Plan Browser.

We ran a regresgon anaysis of post-test on the éove variables for the Pitt-USNA
control group and we found a marginally significant correlation of post-test scores
with average and standard deviation of line acceses (p = 0.083 and p = 0.057
respedively). We found no significant correlations in the same regresson analysis



for the CMU-CCAC contral group. These results support the hypathesis that Pitt-
USNA contral students were selectively reviewing example lines becaise they were
self-explaining spedfic example parts, while the CMU-CCAC contrd students
reviewing adions were not acompanied by effedive self-explanation. The hypothesis
that Pitt-USNA students sif-explained more in the crtrol condition is consistent
with the faa that Pitt-USNA students had started studying Newton' s Laws ealier and
had probably gained more knowledge on the topic. This knowledge was na strong
enough to make Pitt-USNA students perform better in problem solving tasks (their
pretest performance was comparable to the CMU-CCAC students' one). However, it
was sufficient to enable Pitt-USNA contrd subjeds to generate dfective self-
explanations under the minimal scafolding provided by the masking interface We
argue that it is indeed the minimality of the scafolding that allowed Pitt-CMU control
students to bring to bea their knowledge & best. Because of their more alvanced
leaning stage, spontaneous lf-explanation triggered by the masking interfacelikely
cane quite dfortlesdy to Pitt-USNA control students and therefore was nat
suffocaed by the lower level of mativation that prevented Pitt-USNA students in the
SE condition to lean effedively from the SE-Coach sdlf-explanation tods.

4 Conclusionsand Future Work

In this paper, we discussed the results of a forma study to evaluate an intelligent
computer tutor that coaches the meta-cogritive skill known as slf-explanation —
generating explanations to aneself to darify an example worked out solution. The
tutor provides different levels of tailored scafolding for self-explanation, to provide
ead student with the minimum intervention sufficient to trigger self-explanation
while maintaining the spontaneous, constructive nature of thisleaning strategy.

Forma studies are fundamental to assess why and how a cmputer tutor does or
does not support leaning. Understanding how students use and lean from the SE-
Coad is especialy important, because the SE-Coach focuses on a leaning process
that no aher tutoring system has tackled so far and whase underlying mechanisms are
still unclea and under investigation. In particular, different studies have shown that
both simple prompting [4] and more daborate scafolding [3] enhance sdlf-
explanation and leaning, but no study has yet addressed the explicit comparison d
these different kinds of intervention. The study that we performed provides initial
insights on this isaue. In this paper, we have presented data analysis results indicating
that the stage of learning in which the students use the system influences how much
they benefit from versions of the system that provide different amounts of scafolding
for self-explanation. The data suggest the following conclusions on the SE-Coach
effediveness and, in generd, on the dfediveness of suppat for self-explanation
during example studying.

e Rich scafolding for self-explanation, like the ore provided by the cmmplete SE-
Coad in the eperimental condition, can improve students' performance d an early
leaning stage. At this dage, students are still unfamiliar with the subjed matter.
Hence they benefit more from structured help in using domain knowledge to
generate dfedive sdf-explanaions and are more motivated to put substantia effort
in exploiting this help.



* As dudents become more proficient in the subjed metter, even minimal prompting,
like the one provided by the masking interface in the ntrol condition, can help
improve their self-explanations. At this gsage, more daborate scadfolding can
adually be less effedive, if it requires gudents to put too much effort in studying
examples, because they may ladk the motivation to do so.

Of course, more data is necessry to confirm these mnclusions. We plan to gather
the data by running a study in the ontext of classoom instruction, where it is easier
to control a what stage of learning the students use the system. If the study confirms
the results presented in this paper, it may be beneficid to add to the SE-Coach the
cgpability to automaticaly tailor the available levels of scafolding depending upon
the student’ s famili arity with the examples topic.
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