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Abstract. This paper aims to demonstrate the application of multi-objective 
evolutionary optimization, namely an adaptation of NSGA-II, to simultane-
ously optimize the assembly sequence plan as well as selection of the type and 
number of assembly stations for a production shop that produces three different 
models of wind propelled ventilators. The decision variables, which are the as-
sembly sequences of each product and the machine selection at each assembly 
station, are encoded in a manner that allows efficient implementation of a repair 
operator to maintain the feasibility of the offspring. Test runs are conducted for 
the sample assembly system using a crossover operator tailored for the pro-
posed encoding and some conventional crossover schemes. The results show 
overall good performance for all schemes with the best performance achieved 
by the tailored crossover, which illustrates the applicability of multi-objective 
GA’s. The presented framework proposed is generic to be applicable to other 
products and assembly systems. 

1   Introduction 

The optimization of product assembly processes is a key issue for the efficiency of 
manufacturing system, which involves several different types of decisions such as 
selecting the assembly sequences of products, assigning tasks to the assembly sta-
tions, and selecting the number and type of machines at each assembly station. 

Research on assembly sequence planning was originated by two pioneer works in 
late eighties: De Fazio and Whitney [1] and de Mello et al. [2] independently pre-
sented graph-based models of assemblies and algorithms for enumerating all feasible 
assembly sequences. Since then, numerous work has been conducted on assembly 
sequence planning1. However, a few attentions have been paid to the integration of 
assembly sequence planning and assembly system design. 

Assembly system design is a complex problem that may have several objectives 
such as minimizing overall cost, meeting production demand, increasing productivity, 
reliability and/or product quality. Assembly sequence planning is a precedence-
                                                           
*  Corresponding Author 
1  A comprehensive bibliography of the area is found at 

www.cs.albany.edu/~amit/bib/ASSPLAN.html 
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constrained scheduling problem, which is known to be NP-complete [3]. Further-
more, allocating machines to assembly tasks is resource constrained scheduling which 
is also known to be NP-complete [3]. In real-life workshops, there is a need to con-
sider assembly sequence and machine allocation simultaneously which results in a 
doubled difficulty that makes such problems beyond the feasibility of full enumera-
tion. Thus, assembly systems design provides rich opportunities for heuristics ap-
proaches such multi-objective GA’s. For instance, process planning using GA’s was 
considered in the late eighties [4]. More recently, Awdah et al. [5] proposed a com-
puter-aided process-planning model based on GA’s. Kaeschel et al. [6] applied an 
evolutionary algorithm to shop floor scheduling and multi-objective evolutionary 
optimization of flexible manufacturing systems was considered by Chen and Ho [7]. 
Saitou et al.[8] applied GA for robust optimization of multi-product manufacturing 
systems subject to production plan variations. 

This paper presents the application of multi-objective GA’s to simultaneously op-
timize the assembly sequence, assembly stations’ type and number selection, based on 
data extracted from a real assembly shop that assembles specially designed wind-
propelled ventilators (Fig. 1). The reminder of the paper first describes the problem 
formulation, a special encoding and crossover schemes, the results of simulation runs 
with the proposed crossover scheme as well as arithmetic projection, multipoint and 
uniform crossovers. Finally, discussion and future extensions are provided. 

2   Wind Propelled Ventilators 

The family of products considered is the three models of wind propelled ventilators. 
Shown in Fig. 1, is a photo of model A, the basic model used in ventilating industrial 
or storage hangars in dry regions. The basic idea of operation is that the ventilators 
are placed atop ventilating ducts in the ceiling of the hangars. When the lateral wind 
blows across the hangar, it spins the spherically shaped blades, which in turn perform 
a sucking action that draws air from the top of the hangar. Model B has the same 
exoskeleton and blades as model A, but has different internal shaft as well as an addi-
tional rotor that improves the air suction out of the ventilation duct. Model C is the 
same as Model B, except that its outer blades have improved shape design. The three 
models share several components, and are assembled in the same assembly shop and 
may use the same assembly stations. Table 1 provides a listing of all components in 
the three models and in which models they are being used. 

The problem of designing an assembly system that can assemble the three types of 
ventilators, models A, B and C, is formulated as a multi-objective optimization prob-
lem with two objective functions to me minimized: assembly cost f1 and production 
shortage within a given production period f2. These are the functions for the three 
decision variable categories: the assembly sequences of each products, the type of 
machines at each assembly station, and the number of machines for each type.  

The model of the assembly system used in this study is simple one, which com-
putes the production cost f1 by summing over the startup and hourly operation rate of 
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the assembly stations. Production volume is estimated according to average cycle 
times, for the numbers and types of machines assigned to each assembly task: 

 

Fig. 1. A wind-propelled ventilator – Model A 

While the simulations provided in this paper are based on the real assembly shop 
data in a company, the actual production volumes and assembly station rates are not 
revealed due to proprietary nature of the information. 

 

Table 1. Listing of components in three models of the wind-propelled ventilator. 
 

Used in Model Component 
Label 

Description 
A B C 

1 Duct and Main Body x x x 
2 Lower Bracket – Type #1 x   
3 Upper Bracket x x x 
4 Axle x   
5 Lower Ball Bearing – Type #1 x   
6 Upper Ball Bearing x x x 
7 Lower Hub – Type #1 x   
8 Upper Hub – Type #1 x   
9 Blades – Type #1 x x  
10 Lower Bracket – Type #2  x x 
11 Shaft  x x 
12 Lower Ball Bearing – Type #2  x  
13 Lower Hub – Type #2  x x 
14 Upper Hub – Type #2  x x 
15 Inner Rotor  x x 
16 Blades Type #2   x 

Minimize 1
Machines Machines

Investment Cost Processing Time  Hourly Ratef = + ×∑ ∑  (1) 

 2
Products

max(0,  Target Production - Production Volume)f = ∑  (2) 

Decision Var. Assembly Sequence, Type of assembly stations, Number of assem-
bly stations of every used type 
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3   Problem Formulation for Multi-objective GA 

A software system, ASMGA (ASsembly using Multi-objective GA) was imple-
mented, whose overall structure is illustrated in Fig. 2. It is capable of communicating 
with user-provided models of assembly systems involving multi-products.  

 

Fig. 2. Overall structure of the ASMGA (ASsembly using Multi-objective GA).  

3.1   Encoding Scheme of Chromosomes 

The following three decision variable sets are considered: 
 
• Assembly sequence of every product; 
• Choice of type of assembly station for every assembly operation; 
• Number of assembly stations of every type. 
 
For every product consisting of N components, there are 2(N – 1) variables that con-
trol the assembly sequence, (N – 1) variables controlling the type of assembly stations 
and (N – 1) variables to specify the number of each type of assembly stations in the 
platform. In the rest of the paper, a set of values for the decision variables is some-
times referred to as a candidate design of the assembly system. 

The above decision variables can be efficiently encoded in a fixed-length string 
of integers in a manner that allows efficient implementation of a repair operator to 
maintain the feasibility of the offspring for assembly precedence constraints.  The 
layout of the integer string chromosome is shown in Fig. 3. The basic building block 
of the chromosome is a set of four integer numbers that define one assembly opera-
tion. Every product is assembled through a set of assembly operations. Performing 

Generate initial population 

Apply selection, crossover, 
mutation & repair 

N 

Evaluate objectives & 
Constraints 

Termination? 

Y 

Return best designs (un-
dominated Pareto-front) 

Candidate de-
signs

Objectives & 
constraints 

Evaluate objectives & 
constraints 

Optimizer (MOGA) 

User model of assembly system 
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assembly operations to obtain an assembled product out of its individual components 
may be mentally visualized by thinking of a hypothetical bin, which initially contains 
all separate components of the product. In every assembly operation, one reaches into 
the bin, grabs two items assembles them together (provided they can be assembled 
together) and puts them back into the hypothetical bin. It can be shown that one gets a 
product consisting of N components, in this manner, in exactly N-1 assembly opera-
tions. These N-1 assembly operations are laid on a linear chromosome. 

The four-integer assembly operation information translates as follows: The first 
number refers to one of the components (or sub-assemblies) inside the bin of the 
product. The second number refers to the component in the bin, which will be joined 
to the one selected by the first number. The third number refers to the assembly sta-
tion chosen to perform the operation and the fourth number refers to the number of 
those assembly stations that should be present in the assembly shop. For example, 
chromosome c=11421021 for the simple product shown in Fig. 4 would be translated 
as follows:  

 
• In the first assembly operation (first four numbers) the component, which has the 

order of 1 (i.e,. the component labeled 2, because ordering starts at zero) is se-
lected. 

• The component labeled 2 is assembled to the second component that can be cou-
pled to it (i.e., the component labeled 3) to produce a subassembly (2,3), using 
the fifth type of assembly station that can perform the task and there are two such 
stations in the assembly plant 

• In the second assembly operation, according to the new order of the components 
and subassemblies in the bin, the subassembly (2,3) is selected. 

• The subassembly (2,3) is assembled the first (and only) component that can be 
coupled to it (i.e., the component labeled 1) to produce the full product (1,2,3), 
using the second type of assembly station that can perform the task and there is 
one such station in the assembly plan 

 

Fig. 3. Layout of chromosomes. 

component selection 

number of stations 

component to couple to the one selected 

assembly station ID 

assembly operation assembly operation 

product #2 product #1 

chromosome corresponds to all products in the assembly system
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Fig. 4. A simple product. 

3.2   Assembly Constraints and Repair Operator 

Due to the geometrical and other quality requirements, assembly precedence relation-
ships exist as constraints upon the assembly sequence in almost every real product. 
Thus it makes sense to define all the assembly constraints during a pre-processing 
stage, and then make (or attempt to make) all candidate designs of the assembly sys-
tem conform to those constraints throughout the optimization. The ASMGA software 
includes a pre-processor that guides the user to define all feasible assembly operations 
and automatically generates a set of all sub-assemblies that may be encountered. 

Chromosome reproduction through crossover and mutation may result in an as-
sembly sequences that violate such precedence relationships. One way of enforcing 
the feasibility of the assembly sequences is through penalizing the objective functions 
of infeasible candidate designs. However, such penalizing means relying on the selec-
tion according to fitness, while allowing the integer numbers on the chromosome to 
take on any value within the maximum and minimum ranges, which would lead to an 
impossibly large search space that is probably beyond the capabilities of GA or any 
other optimization technique. Instead, after crossover and mutation, a repair operator 
is invoked that systematically increments the integer number on the chromosome so 
that the assembly sequence remains feasible. Such integer incrementing is performed 
for every four-integer assembly operation till it represents one of the assembly opera-
tions defined on the set of feasible assembly operations, that can be invoked to join 
two of the components or sub-assemblies that are in the hypothetical bin of the prod-
uct. 

3.3   Crossover 

In the following example, four crossover schemes are tested: Arithmetic Projection, 
Multi-Point, Uniform, and a special crossover operator especially tailored for the 
proposed encoding scheme. 

Arithmetic Projection Crossover 

This is a blend of arithmetic crossover [9] and heuristic crossover [9]. Both arithmetic 
and linear projection crossover schemes are mainly applied in real coded GA’s and 
they are tested in this paper although the chromosome is integer coded, because some 
portion of the chromosome has underlying continuity (the number of assembly sta-

core: 2 

cover: 3 

box: 1 
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tions). When viewing the chromosome in multi-dimensional vector space, such cross-
over schemes set the gene values of the offspring chromosome to some point along the 
line joining two parent points. In arithmetic crossover, the offspring point is in between 
the parents, while in projection crossover the point is outside the parents, projected in 
the direction of the better (more fit or higher rank) parent. Thus in the combined version 
of arithmetic-projection, the gene values of the offspring are given by: 

1 2 1( )C P P Pg g r g g= + −  (3) 

Where gc is the offspring gene value, gp1 is the gene value of the less fit (or lower 
rank) parent, gp2 is the gene value of the more fit parent, and r is a uniformly distrib-
uted random number within a certain range. If the range of r is between zero and 1.0, 
Eq. 1 would represent arithmetic crossover, while if the range is between 1.0 and 
some number bigger than 1.0, Eq. 1 would represent heuristic crossover. In this pa-
per, r is uniformly distributed between zero and 2.5, so it represents a blend of both 
arithmetic and heuristic crossover. 

Multipoint Crossover 

Similar to single-point crossover but exchange of chromosome segments between 
parents to produce the offspring chromosome occurs at several points [4]. It is be-
lieved that multipoint crossover works better for long chromosomes. 

Uniform Crossover 

Can be viewed as an extreme case of multipoint crossover, where every building 
block can be exchanged between the parent chromosomes, with a specified probabil-
ity. 

Special Crossover Scheme 

A Special crossover operator is designed based on understanding of the nature of the 
encoding scheme of the chromosomes. The basic idea is that the meaning of the num-
bers of a four-integer building block is dependent on the state of the components and 
subassemblies present in the hypothetical bin of the product. Thus if crossover 
changes some building block on a chromosome, it means crossover has subsequently 
changed the meaning of all the building blocks that follow the changed building 
block for that product. The special crossover operator is designed as follows: 
 
• One single-point crossover is used for every product on the chromosome. This is 

slightly different from multipoint crossover as one crossover occurs in every 
product, while in multipoint crossover, one product can have several crossover 
points, while another has none. 

• Crossover can occur only at intervals in between the building blocks (which are 
of length four, each defining an assembly operation). 
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• In order to grow good schemata in the population of chromosomes, the crossover 
location in the initial population has higher probability of occurring nearer to the 
start of the string, but as the search progresses, the crossover location probability 
centeroid is shifted gradually towards the end of the string. 

 
It is worth mentioning that within one product, single-point crossover is chosen 

and not two-point or multi-point crossover because of the heavy backward depend-
ency in the chromosome introduced by the encoding scheme. This backward depend-
ency makes a second crossover point within the same product no more than a random 
mutation for the remaining part of the chromosome. 

3.4   Mutation 

When arithmetic projection, multipoint or uniform crossover are used, mutation of the 
building blocks occurs in a classical fashion, where according to a user specified 
probability, random changing of the numbers on the chromosome to any number 
within their allowed range with uniform probability is performed [9]. However, when 
the special crossover is employed, a corresponding special mutation is used. 

In the special mutation, separate probabilities are assigned to each of the four num-
bers of the building block. Typically, the first number has the least mutation probabil-
ity, and then following numbers the next have higher and higher mutation probabili-
ties. The intuition behind this is that the meaning of the second number on the 
building block is dependent on the first number, so changing the first subsequently 
changes the second. Also the first two numbers on the building block play the role of 
defining the assembly sequence, so changing any of them subsequently changes the 
meaning of the whole chromosome portion that follows the location of the mutation. 

It is noted that the special mutation scheme could also be applied to the classical 
forms of crossover considered. However, the authors preferred keeping the study of 
specialized operators (crossover and mutation) separate from classical ones in order 
to highlight the benefit (if any) that is gained by introducing prior knowledge of the 
problem structure into the GA operators. 

3.5   Multi-objective GA 

The implemented multi-objective GA is similar to NSGA-II [10, 11] with a few 
modifications in enforcing elitism, where the un-dominated members are copied into 
a separate elite population that is preserved across generations unless it grows too big. 
General highlights of NSGA-II that differ from single objective GA include: i) selec-
tion is based on ranking through Pareto-based dominance and ii) use of a Nitching 
function in selecting from with members that have the same rank. The Nitching func-
tion serves to give higher probability of selection for members that have no others 
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near to them and thereby enhances the spread of the population over the Pareto-front. 
The pseudo-code for the implemented multi-objective GA is given as: 

1. Generate Initial Population 

2. Loop Until Termination: (Max. Number of Generations or Function 
Evaluations) 

3. Perform Pareto-Ranking of Current Population 

4. Add Un-dominated Members of Current Population Members into Elite 
Population 

5. Re-Rank Elite Population and Kill any members that become dominated 

6. If Elite Population Grows beyond an allowed size, select a number of 
members equal to the allowed elite population size according to a 
Nitching function and kill the rest of the members 

7. Loop until New Population is full 

8. Select Parents for reproduction 

a. Perform a binary tournament to select a rank 

b. Select a parent member from within a chosen rank according 
to a Nitching function 

9. Perform Crossover, mutation and Repair then place new offspring in 
New Population 

10. When New Population is full, replace Current Population with the new 
one and repeat at Step #2. 

4   Results and Discussion 

The feasible assembly operations satisfying the assembly precedence relations for 
each of the ventilator models are shown in a tree representation in Fig. 5. A list of 
assembly stations is provided in Table 2. Ten multi-objective GA runs are performed 
for each of the crossover schemes, using a population size of 150, for 100 genera-
tions, with a limit on the elite population size of 30 individuals. Crossover and muta-
tion follow the general recommendation [4] of high crossover probability (about 0.9), 
low mutation rate (about 2%). 

Figure 6 shows typical populations at the beginning and end of the search and their 
corresponding un-dominated elite front. Since the objective is to minimize both as-
sembly cost f1 and production shortage f2, the closer a candidate design gets to the 
lower left corner of the plot, the better the design is. The difference between the ini-
tial and final populations is quite apparent. The initial population is scattered over a 
wide range on the  f1 –  f2 space, while final population has its un-dominated front 
closer to the lower left corner of the plot and the whole population is gathered pretty 
close to the un-dominated front. As such, the plot implies that convergence is 
achieved and that the choice of number of generations is sufficient.  

Of particular interest, is the extreme point along the Pareto-front, which has zero 
production volume shortage (i.e. f2=0), meaning that it has minimal production cost 
while meeting the required production volume during a given production period. This 
point on the Pareto-front is referred to as the best point. In the best-known solution of 
the problem, the best point has the assembly sequences shown using thicker lines in 
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Fig. 5. The best-known solution also utilizes types and number of assembly stations 
as shown in the last column of Table 2. It is observed, that whenever possible, the 
best solution avoids employing assembly stations that incur extra cost to do an opera-
tion. 

The history of the average value of  f1 for the best point during the search is dis-
played in Fig. 7. The percentage success in attaining the best-known solution is given 
in Table 3. It is seen in Fig. 7 that given enough generations, all the considered cross-
over schemes succeeded in bringing down the objective function to the near-optimal 
region. Arithmetic-Projection crossover seems to have the fastest early descent be-
cause of its embedded gradient following heuristic, but has the least probability of 
success in attaining the best-known solution, which is probably due to premature 
convergence. Multi-point crossover has the slowest convergence rate but has a good 
chance at reaching the best-known solution. The proposed crossover scheme, which is 
tailored according to the structure of the encoded chromosome, has a moderate con-
vergence rate, but superior chance at reaching the best-known solution. A possible 
reason is that the employed encoding scheme introduces heavy backward dependency 
to the chromosome genes, which presents difficulty to traditional crossover schemes, 
but the special crossover scheme is better geared to operate with such encoding. 

Overall, all the considered crossover schemes performed well at getting close to 
the best-known solution, which implies the effectiveness of using multi-objective 
GA’s, and in particular the adapted version of NSGA-II, for similar problems. 

Table 2. List of assembly stations. 

ID Operation 
Inv. 
Cost 

Hr. 
Rate 

# in 
Opt. 

ID Operation 
Inv. 
Cost 

Hr. 
Rate 

# in 
Opt. 

1 
Frame to L. 
Bracket 

1000 5.0 1 11 Blades 4000 10.0 2 

2 
Frame to U. 
Bracket 

3000 10.0 1 12
L. Brckt 2 to L. 
Brg. 2 

2000 8.0 1 

3 L. Brckt to Axle 1 2000 8.0 1 13 U. Brckt to U. Brg. 2000 8.0 1 
4 L. Brckt to Axle 2 3000 8.0 NA 14 L. Brg. 2 to Shaft 4000 10.0 1 
5 U. Brckt to Axle 4000 8.0 1 15 U. Brg. to Shaft 2000 8.0 1 
6 Axle to L. Brg. 1000 8.0 1 16 Inner Rotor 1 3000 8.0 2 
7 Axle to U. Brg. 1 1000 8.0 1 17 Inner Rotor 2 5000 10.0 NA 
8 Axle to U. Brg. 2 4000 8.0 NA 18 Shaft to L. Hub 3000 8.0 1 
9 L. Brg. to L. Hub 1000 8.0 1 19 Shaft to U. Hub 3000 8.0 1 

10 U. Brg. to U. Hub 1000 8.0 1    

 

5   Conclusion 

This paper presented the application of an adapted version of NSGA-II for multi-
objective optimization of a real multi-product assembly shop. Although using real 
data, the model of an assembly system is rather simple. Further extension of this 
study, would test the same approach on more sophisticated assembly models through 
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linking to random discrete time event simulation software such as ARENA [12]. Also 
presented in this paper, was a special encoding scheme for the decision parameters 
and associated special crossover, mutation and repair operators. The obtained results 
for the simplified assembly model are encouraging and motivate further exploration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Feasible assembly operations and sequences for best-known solution (thick lines). 
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Fig. 7. History of search average progress for the best point. 

 
 

Table 3. Percentage success in attaining the best-known solution. 

Crossover Scheme Percentage Success 
Arithmetic Projection Crossover 30% 
Multipoint Crossover 50% 
Uniform Crossover 40% 
ASMGA Special Crossover 90% 
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