

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 2096–2108, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Simultaneous Assembly Planning and Assembly System
Design Using Multi-objective Genetic Algorithms

Karim Hamza1, Juan F. Reyes-Luna1, and Kazuhiro Saitou2 *

1 Graduate Student, 2Assistant Professor, Mechanical Engineering Department
University of Michigan, Ann Arbor, MI 48109-2102, USA

{khamza,juanfr,kazu}@.umich.edu

Abstract. This paper aims to demonstrate the application of multi-objective
evolutionary optimization, namely an adaptation of NSGA-II, to simultane-
ously optimize the assembly sequence plan as well as selection of the type and
number of assembly stations for a production shop that produces three different
models of wind propelled ventilators. The decision variables, which are the as-
sembly sequences of each product and the machine selection at each assembly
station, are encoded in a manner that allows efficient implementation of a repair
operator to maintain the feasibility of the offspring. Test runs are conducted for
the sample assembly system using a crossover operator tailored for the pro-
posed encoding and some conventional crossover schemes. The results show
overall good performance for all schemes with the best performance achieved
by the tailored crossover, which illustrates the applicability of multi-objective
GA’s. The presented framework proposed is generic to be applicable to other
products and assembly systems.

1 Introduction

The optimization of product assembly processes is a key issue for the efficiency of
manufacturing system, which involves several different types of decisions such as
selecting the assembly sequences of products, assigning tasks to the assembly sta-
tions, and selecting the number and type of machines at each assembly station.

Research on assembly sequence planning was originated by two pioneer works in
late eighties: De Fazio and Whitney [1] and de Mello et al. [2] independently pre-
sented graph-based models of assemblies and algorithms for enumerating all feasible
assembly sequences. Since then, numerous work has been conducted on assembly
sequence planning1. However, a few attentions have been paid to the integration of
assembly sequence planning and assembly system design.

Assembly system design is a complex problem that may have several objectives
such as minimizing overall cost, meeting production demand, increasing productivity,
reliability and/or product quality. Assembly sequence planning is a precedence-

* Corresponding Author
1 A comprehensive bibliography of the area is found at

www.cs.albany.edu/~amit/bib/ASSPLAN.html

 Simultaneous Assembly Planning and Assembly System Design 2097

constrained scheduling problem, which is known to be NP-complete [3]. Further-
more, allocating machines to assembly tasks is resource constrained scheduling which
is also known to be NP-complete [3]. In real-life workshops, there is a need to con-
sider assembly sequence and machine allocation simultaneously which results in a
doubled difficulty that makes such problems beyond the feasibility of full enumera-
tion. Thus, assembly systems design provides rich opportunities for heuristics ap-
proaches such multi-objective GA’s. For instance, process planning using GA’s was
considered in the late eighties [4]. More recently, Awdah et al. [5] proposed a com-
puter-aided process-planning model based on GA’s. Kaeschel et al. [6] applied an
evolutionary algorithm to shop floor scheduling and multi-objective evolutionary
optimization of flexible manufacturing systems was considered by Chen and Ho [7].
Saitou et al.[8] applied GA for robust optimization of multi-product manufacturing
systems subject to production plan variations.

This paper presents the application of multi-objective GA’s to simultaneously op-
timize the assembly sequence, assembly stations’ type and number selection, based on
data extracted from a real assembly shop that assembles specially designed wind-
propelled ventilators (Fig. 1). The reminder of the paper first describes the problem
formulation, a special encoding and crossover schemes, the results of simulation runs
with the proposed crossover scheme as well as arithmetic projection, multipoint and
uniform crossovers. Finally, discussion and future extensions are provided.

2 Wind Propelled Ventilators

The family of products considered is the three models of wind propelled ventilators.
Shown in Fig. 1, is a photo of model A, the basic model used in ventilating industrial
or storage hangars in dry regions. The basic idea of operation is that the ventilators
are placed atop ventilating ducts in the ceiling of the hangars. When the lateral wind
blows across the hangar, it spins the spherically shaped blades, which in turn perform
a sucking action that draws air from the top of the hangar. Model B has the same
exoskeleton and blades as model A, but has different internal shaft as well as an addi-
tional rotor that improves the air suction out of the ventilation duct. Model C is the
same as Model B, except that its outer blades have improved shape design. The three
models share several components, and are assembled in the same assembly shop and
may use the same assembly stations. Table 1 provides a listing of all components in
the three models and in which models they are being used.

The problem of designing an assembly system that can assemble the three types of
ventilators, models A, B and C, is formulated as a multi-objective optimization prob-
lem with two objective functions to me minimized: assembly cost f1 and production
shortage within a given production period f2. These are the functions for the three
decision variable categories: the assembly sequences of each products, the type of
machines at each assembly station, and the number of machines for each type.

The model of the assembly system used in this study is simple one, which com-
putes the production cost f1 by summing over the startup and hourly operation rate of

2098 K. Hamza, J.F. Reyes-Luna, and K. Saitou

the assembly stations. Production volume is estimated according to average cycle
times, for the numbers and types of machines assigned to each assembly task:

Fig. 1. A wind-propelled ventilator – Model A

While the simulations provided in this paper are based on the real assembly shop
data in a company, the actual production volumes and assembly station rates are not
revealed due to proprietary nature of the information.

Table 1. Listing of components in three models of the wind-propelled ventilator.

Used in Model Component
Label

Description
A B C

1 Duct and Main Body x x x
2 Lower Bracket – Type #1 x
3 Upper Bracket x x x
4 Axle x
5 Lower Ball Bearing – Type #1 x
6 Upper Ball Bearing x x x
7 Lower Hub – Type #1 x
8 Upper Hub – Type #1 x
9 Blades – Type #1 x x
10 Lower Bracket – Type #2 x x
11 Shaft x x
12 Lower Ball Bearing – Type #2 x
13 Lower Hub – Type #2 x x
14 Upper Hub – Type #2 x x
15 Inner Rotor x x
16 Blades Type #2 x

Minimize 1
Machines Machines

Investment Cost Processing Time Hourly Ratef = + ×∑ ∑ (1)

 2
Products

max(0, Target Production - Production Volume)f = ∑ (2)

Decision Var. Assembly Sequence, Type of assembly stations, Number of assem-
bly stations of every used type

 Simultaneous Assembly Planning and Assembly System Design 2099

3 Problem Formulation for Multi-objective GA

A software system, ASMGA (ASsembly using Multi-objective GA) was imple-
mented, whose overall structure is illustrated in Fig. 2. It is capable of communicating
with user-provided models of assembly systems involving multi-products.

Fig. 2. Overall structure of the ASMGA (ASsembly using Multi-objective GA).

3.1 Encoding Scheme of Chromosomes

The following three decision variable sets are considered:

• Assembly sequence of every product;
• Choice of type of assembly station for every assembly operation;
• Number of assembly stations of every type.

For every product consisting of N components, there are 2(N – 1) variables that con-
trol the assembly sequence, (N – 1) variables controlling the type of assembly stations
and (N – 1) variables to specify the number of each type of assembly stations in the
platform. In the rest of the paper, a set of values for the decision variables is some-
times referred to as a candidate design of the assembly system.

The above decision variables can be efficiently encoded in a fixed-length string
of integers in a manner that allows efficient implementation of a repair operator to
maintain the feasibility of the offspring for assembly precedence constraints. The
layout of the integer string chromosome is shown in Fig. 3. The basic building block
of the chromosome is a set of four integer numbers that define one assembly opera-
tion. Every product is assembled through a set of assembly operations. Performing

Generate initial population

Apply selection, crossover,
mutation & repair

N

Evaluate objectives &
Constraints

Termination?

Y

Return best designs (un-
dominated Pareto-front)

Candidate de-
signs

Objectives &
constraints

Evaluate objectives &
constraints

Optimizer (MOGA)

User model of assembly system

2100 K. Hamza, J.F. Reyes-Luna, and K. Saitou

assembly operations to obtain an assembled product out of its individual components
may be mentally visualized by thinking of a hypothetical bin, which initially contains
all separate components of the product. In every assembly operation, one reaches into
the bin, grabs two items assembles them together (provided they can be assembled
together) and puts them back into the hypothetical bin. It can be shown that one gets a
product consisting of N components, in this manner, in exactly N-1 assembly opera-
tions. These N-1 assembly operations are laid on a linear chromosome.

The four-integer assembly operation information translates as follows: The first
number refers to one of the components (or sub-assemblies) inside the bin of the
product. The second number refers to the component in the bin, which will be joined
to the one selected by the first number. The third number refers to the assembly sta-
tion chosen to perform the operation and the fourth number refers to the number of
those assembly stations that should be present in the assembly shop. For example,
chromosome c=11421021 for the simple product shown in Fig. 4 would be translated
as follows:

• In the first assembly operation (first four numbers) the component, which has the

order of 1 (i.e,. the component labeled 2, because ordering starts at zero) is se-
lected.

• The component labeled 2 is assembled to the second component that can be cou-
pled to it (i.e., the component labeled 3) to produce a subassembly (2,3), using
the fifth type of assembly station that can perform the task and there are two such
stations in the assembly plant

• In the second assembly operation, according to the new order of the components
and subassemblies in the bin, the subassembly (2,3) is selected.

• The subassembly (2,3) is assembled the first (and only) component that can be
coupled to it (i.e., the component labeled 1) to produce the full product (1,2,3),
using the second type of assembly station that can perform the task and there is
one such station in the assembly plan

Fig. 3. Layout of chromosomes.

component selection

number of stations

component to couple to the one selected

assembly station ID

assembly operation assembly operation

product #2 product #1

chromosome corresponds to all products in the assembly system

 Simultaneous Assembly Planning and Assembly System Design 2101

Fig. 4. A simple product.

3.2 Assembly Constraints and Repair Operator

Due to the geometrical and other quality requirements, assembly precedence relation-
ships exist as constraints upon the assembly sequence in almost every real product.
Thus it makes sense to define all the assembly constraints during a pre-processing
stage, and then make (or attempt to make) all candidate designs of the assembly sys-
tem conform to those constraints throughout the optimization. The ASMGA software
includes a pre-processor that guides the user to define all feasible assembly operations
and automatically generates a set of all sub-assemblies that may be encountered.

Chromosome reproduction through crossover and mutation may result in an as-
sembly sequences that violate such precedence relationships. One way of enforcing
the feasibility of the assembly sequences is through penalizing the objective functions
of infeasible candidate designs. However, such penalizing means relying on the selec-
tion according to fitness, while allowing the integer numbers on the chromosome to
take on any value within the maximum and minimum ranges, which would lead to an
impossibly large search space that is probably beyond the capabilities of GA or any
other optimization technique. Instead, after crossover and mutation, a repair operator
is invoked that systematically increments the integer number on the chromosome so
that the assembly sequence remains feasible. Such integer incrementing is performed
for every four-integer assembly operation till it represents one of the assembly opera-
tions defined on the set of feasible assembly operations, that can be invoked to join
two of the components or sub-assemblies that are in the hypothetical bin of the prod-
uct.

3.3 Crossover

In the following example, four crossover schemes are tested: Arithmetic Projection,
Multi-Point, Uniform, and a special crossover operator especially tailored for the
proposed encoding scheme.

Arithmetic Projection Crossover

This is a blend of arithmetic crossover [9] and heuristic crossover [9]. Both arithmetic
and linear projection crossover schemes are mainly applied in real coded GA’s and
they are tested in this paper although the chromosome is integer coded, because some
portion of the chromosome has underlying continuity (the number of assembly sta-

core: 2

cover: 3

box: 1

2102 K. Hamza, J.F. Reyes-Luna, and K. Saitou

tions). When viewing the chromosome in multi-dimensional vector space, such cross-
over schemes set the gene values of the offspring chromosome to some point along the
line joining two parent points. In arithmetic crossover, the offspring point is in between
the parents, while in projection crossover the point is outside the parents, projected in
the direction of the better (more fit or higher rank) parent. Thus in the combined version
of arithmetic-projection, the gene values of the offspring are given by:

1 2 1()C P P Pg g r g g= + − (3)

Where gc is the offspring gene value, gp1 is the gene value of the less fit (or lower
rank) parent, gp2 is the gene value of the more fit parent, and r is a uniformly distrib-
uted random number within a certain range. If the range of r is between zero and 1.0,
Eq. 1 would represent arithmetic crossover, while if the range is between 1.0 and
some number bigger than 1.0, Eq. 1 would represent heuristic crossover. In this pa-
per, r is uniformly distributed between zero and 2.5, so it represents a blend of both
arithmetic and heuristic crossover.

Multipoint Crossover

Similar to single-point crossover but exchange of chromosome segments between
parents to produce the offspring chromosome occurs at several points [4]. It is be-
lieved that multipoint crossover works better for long chromosomes.

Uniform Crossover

Can be viewed as an extreme case of multipoint crossover, where every building
block can be exchanged between the parent chromosomes, with a specified probabil-
ity.

Special Crossover Scheme

A Special crossover operator is designed based on understanding of the nature of the
encoding scheme of the chromosomes. The basic idea is that the meaning of the num-
bers of a four-integer building block is dependent on the state of the components and
subassemblies present in the hypothetical bin of the product. Thus if crossover
changes some building block on a chromosome, it means crossover has subsequently
changed the meaning of all the building blocks that follow the changed building
block for that product. The special crossover operator is designed as follows:

• One single-point crossover is used for every product on the chromosome. This is

slightly different from multipoint crossover as one crossover occurs in every
product, while in multipoint crossover, one product can have several crossover
points, while another has none.

• Crossover can occur only at intervals in between the building blocks (which are
of length four, each defining an assembly operation).

 Simultaneous Assembly Planning and Assembly System Design 2103

• In order to grow good schemata in the population of chromosomes, the crossover
location in the initial population has higher probability of occurring nearer to the
start of the string, but as the search progresses, the crossover location probability
centeroid is shifted gradually towards the end of the string.

It is worth mentioning that within one product, single-point crossover is chosen

and not two-point or multi-point crossover because of the heavy backward depend-
ency in the chromosome introduced by the encoding scheme. This backward depend-
ency makes a second crossover point within the same product no more than a random
mutation for the remaining part of the chromosome.

3.4 Mutation

When arithmetic projection, multipoint or uniform crossover are used, mutation of the
building blocks occurs in a classical fashion, where according to a user specified
probability, random changing of the numbers on the chromosome to any number
within their allowed range with uniform probability is performed [9]. However, when
the special crossover is employed, a corresponding special mutation is used.

In the special mutation, separate probabilities are assigned to each of the four num-
bers of the building block. Typically, the first number has the least mutation probabil-
ity, and then following numbers the next have higher and higher mutation probabili-
ties. The intuition behind this is that the meaning of the second number on the
building block is dependent on the first number, so changing the first subsequently
changes the second. Also the first two numbers on the building block play the role of
defining the assembly sequence, so changing any of them subsequently changes the
meaning of the whole chromosome portion that follows the location of the mutation.

It is noted that the special mutation scheme could also be applied to the classical
forms of crossover considered. However, the authors preferred keeping the study of
specialized operators (crossover and mutation) separate from classical ones in order
to highlight the benefit (if any) that is gained by introducing prior knowledge of the
problem structure into the GA operators.

3.5 Multi-objective GA

The implemented multi-objective GA is similar to NSGA-II [10, 11] with a few
modifications in enforcing elitism, where the un-dominated members are copied into
a separate elite population that is preserved across generations unless it grows too big.
General highlights of NSGA-II that differ from single objective GA include: i) selec-
tion is based on ranking through Pareto-based dominance and ii) use of a Nitching
function in selecting from with members that have the same rank. The Nitching func-
tion serves to give higher probability of selection for members that have no others

2104 K. Hamza, J.F. Reyes-Luna, and K. Saitou

near to them and thereby enhances the spread of the population over the Pareto-front.
The pseudo-code for the implemented multi-objective GA is given as:

1. Generate Initial Population

2. Loop Until Termination: (Max. Number of Generations or Function
Evaluations)

3. Perform Pareto-Ranking of Current Population

4. Add Un-dominated Members of Current Population Members into Elite
Population

5. Re-Rank Elite Population and Kill any members that become dominated

6. If Elite Population Grows beyond an allowed size, select a number of
members equal to the allowed elite population size according to a
Nitching function and kill the rest of the members

7. Loop until New Population is full

8. Select Parents for reproduction

a. Perform a binary tournament to select a rank

b. Select a parent member from within a chosen rank according
to a Nitching function

9. Perform Crossover, mutation and Repair then place new offspring in
New Population

10. When New Population is full, replace Current Population with the new
one and repeat at Step #2.

4 Results and Discussion

The feasible assembly operations satisfying the assembly precedence relations for
each of the ventilator models are shown in a tree representation in Fig. 5. A list of
assembly stations is provided in Table 2. Ten multi-objective GA runs are performed
for each of the crossover schemes, using a population size of 150, for 100 genera-
tions, with a limit on the elite population size of 30 individuals. Crossover and muta-
tion follow the general recommendation [4] of high crossover probability (about 0.9),
low mutation rate (about 2%).

Figure 6 shows typical populations at the beginning and end of the search and their
corresponding un-dominated elite front. Since the objective is to minimize both as-
sembly cost f1 and production shortage f2, the closer a candidate design gets to the
lower left corner of the plot, the better the design is. The difference between the ini-
tial and final populations is quite apparent. The initial population is scattered over a
wide range on the f1 – f2 space, while final population has its un-dominated front
closer to the lower left corner of the plot and the whole population is gathered pretty
close to the un-dominated front. As such, the plot implies that convergence is
achieved and that the choice of number of generations is sufficient.

Of particular interest, is the extreme point along the Pareto-front, which has zero
production volume shortage (i.e. f2=0), meaning that it has minimal production cost
while meeting the required production volume during a given production period. This
point on the Pareto-front is referred to as the best point. In the best-known solution of
the problem, the best point has the assembly sequences shown using thicker lines in

 Simultaneous Assembly Planning and Assembly System Design 2105

Fig. 5. The best-known solution also utilizes types and number of assembly stations
as shown in the last column of Table 2. It is observed, that whenever possible, the
best solution avoids employing assembly stations that incur extra cost to do an opera-
tion.

The history of the average value of f1 for the best point during the search is dis-
played in Fig. 7. The percentage success in attaining the best-known solution is given
in Table 3. It is seen in Fig. 7 that given enough generations, all the considered cross-
over schemes succeeded in bringing down the objective function to the near-optimal
region. Arithmetic-Projection crossover seems to have the fastest early descent be-
cause of its embedded gradient following heuristic, but has the least probability of
success in attaining the best-known solution, which is probably due to premature
convergence. Multi-point crossover has the slowest convergence rate but has a good
chance at reaching the best-known solution. The proposed crossover scheme, which is
tailored according to the structure of the encoded chromosome, has a moderate con-
vergence rate, but superior chance at reaching the best-known solution. A possible
reason is that the employed encoding scheme introduces heavy backward dependency
to the chromosome genes, which presents difficulty to traditional crossover schemes,
but the special crossover scheme is better geared to operate with such encoding.

Overall, all the considered crossover schemes performed well at getting close to
the best-known solution, which implies the effectiveness of using multi-objective
GA’s, and in particular the adapted version of NSGA-II, for similar problems.

Table 2. List of assembly stations.

ID Operation
Inv.
Cost

Hr.
Rate

in
Opt.

ID Operation
Inv.
Cost

Hr.
Rate

in
Opt.

1
Frame to L.
Bracket

1000 5.0 1 11 Blades 4000 10.0 2

2
Frame to U.
Bracket

3000 10.0 1 12
L. Brckt 2 to L.
Brg. 2

2000 8.0 1

3 L. Brckt to Axle 1 2000 8.0 1 13 U. Brckt to U. Brg. 2000 8.0 1
4 L. Brckt to Axle 2 3000 8.0 NA 14 L. Brg. 2 to Shaft 4000 10.0 1
5 U. Brckt to Axle 4000 8.0 1 15 U. Brg. to Shaft 2000 8.0 1
6 Axle to L. Brg. 1000 8.0 1 16 Inner Rotor 1 3000 8.0 2
7 Axle to U. Brg. 1 1000 8.0 1 17 Inner Rotor 2 5000 10.0 NA
8 Axle to U. Brg. 2 4000 8.0 NA 18 Shaft to L. Hub 3000 8.0 1
9 L. Brg. to L. Hub 1000 8.0 1 19 Shaft to U. Hub 3000 8.0 1

10 U. Brg. to U. Hub 1000 8.0 1

5 Conclusion

This paper presented the application of an adapted version of NSGA-II for multi-
objective optimization of a real multi-product assembly shop. Although using real
data, the model of an assembly system is rather simple. Further extension of this
study, would test the same approach on more sophisticated assembly models through

2106 K. Hamza, J.F. Reyes-Luna, and K. Saitou

linking to random discrete time event simulation software such as ARENA [12]. Also
presented in this paper, was a special encoding scheme for the decision parameters
and associated special crossover, mutation and repair operators. The obtained results
for the simplified assembly model are encouraging and motivate further exploration.

Fig. 5. Feasible assembly operations and sequences for best-known solution (thick lines).

0

100

200

300

400

500

600

0 100000 200000 300000 400000 500000 600000

f 1

f 2

Whole Population - Generation #0

Rank-1 - Generation #0

Whole Population - Generation #100

Rank-1 - Generation #100

Fig. 6. Typical display of initial and final populations and their un-dominated Pareto-fronts.

Model A

Model B

Model C

 Simultaneous Assembly Planning and Assembly System Design 2107

120000

130000

140000

150000

160000

170000

180000

0 10 20 30 40 50 60 70 80 90 100

Generation Number

f 1
Arithmetic-Projection

Multipoint

Uniform

ASMGA Special

Fig. 7. History of search average progress for the best point.

Table 3. Percentage success in attaining the best-known solution.

Crossover Scheme Percentage Success
Arithmetic Projection Crossover 30%
Multipoint Crossover 50%
Uniform Crossover 40%
ASMGA Special Crossover 90%

Acknowledgements. This work is an extension of a course project for ME588:
Assembly Modeling conducted during the Fall 2002 semester at the University of
Michigan, Ann Arbor. MECO: Modern Egyptian Contracting provided the data for
the wind-propelled ventilators.

References

1. De Fazio, T., Whitney, D.: Simplified Generation of All Mechanical Assembly Se-
quences. IEEE J. of Robotics and Automation, Vol. 3, No. 6, (1987) 640–658.

2. De Mello, H., Luiz S., Sanderson, A.: A correct and complete algorithm for the generation
of mechanical assembly sequences. IEEE Transactions on Robotics and Autonomous Sys-
tems, Vol. 7, No. 2 (1991) 228–240.

3. Garey, M., Johnson, D.,: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, NY, (1979).

4. Goldberg, D.: Genetic Algorithms in Search Optimization and Machine Learning. Addi-
son – Wesley Publishing Company (1989).

5. Awdah, N., Sepehri, N., Hwalwshka, O.: A Computer-Aided Process Planning Model
Based o Genetic Algorithms. Computers and Operations Research, Vol. 22, No. 8, (1995)
841–856.

2108 K. Hamza, J.F. Reyes-Luna, and K. Saitou

6. Kaeschel, J., Meier, B., Fisher, M., Teich, T.: Evolutionary Real-World Shop Floor
Scheduling using Parallelization and Parameter Coevolution. Proceedings of the Genetic
and Evolutionary Computation Conference, Las Vegas, NV (2000) 697–701.

7. Chen, J., Ho, S.: Multi-Objective Evolutionary Optimization of Flexible Manufacturing
Systems. Proceedings of the Genetic and Evolutionary Computation Conference, San
Francisco, CA (2001) 1260–1267.

8. Saitou, K., Malpathak, S., Qvam, H.: Robust Design of Flexible Manufacturing Systems
using Colored Petri Net and Genetic Algorithm. Journal of Intelligent Manufacturing,
Vol. 13, No. 5, (2002) 339–351.

9. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd edn.
Springer-Verlag, Berlin Heidelberg New York (1996).

10. Deb, K., Argawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting
Genetic Algorithm for Multi-Objective Optimization: NSGA-II. Proceedings of the Paral-
lel Problem Solving from Nature VI Conference, Paris, France (2000) 849–858.

11. Coello, C., Van Veldhuizen, D., Lamont, G.: Evolutionary Algorithms for Solving Multi-
Objective Problems. Kluwer Academic Publishers (2002).

12. Kelton, W., Sadowski, R., Sadowski, D.: Simulation with ARENA. 2nd edn, McGraw
Hill (2002).

	1 Introduction
	2 Wind Propelled Ventilators
	3 Problem Formulation for Multi-objective GA
	3.1 Encoding Scheme of Chromosomes
	3.2 Assembly Constraints and Repair Operator
	3.3 Crossover
	3.4 Mutation
	3.5 Multi-objective GA

	4 Results and Discussion The feasible assembly operations
	5 Conclusion

