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Abstract. Features represent the characteristics of objects and selecting or syn-
thesizing effective composite features are the key factors to the performance of 
object recognition. In this paper, we propose a co-evolutionary genetic pro-
gramming (CGP) approach to learn composite features for object recognition. 
The motivation for using CGP is to overcome the limitations of human experts 
who consider only a small number of conventional combinations of primitive 
features during synthesis. On the other hand, CGP can try a very large number 
of unconventional combinations and these unconventional combinations may 
yield exceptionally good results in some cases. Our experimental results with 
real synthetic aperture radar (SAR) images show that CGP can learn good com-
posite features. We show results to distinguish objects from clutter and to 
distinguish objects that belong to several classes. 

1   Introduction 

In this paper, we apply genetic programming to synthesize composite features for 
object recognition. The basic task of object recognition is to identify the kinds of 
objects in an image, and sometimes the task may include to estimate the pose of the 
recognized objects. One of the key approaches to object recognition is based on fea-
tures extracted from images. These features capture the characteristics of the object to 
be recognized and are fed into a classifier to perform recognition. The quality of ob-
ject recognition is heavily dependent on the effectiveness of the features. However, it 
is difficult to extract good features from real images due to various factors, including 
noise. More importantly, there are many features that can be extracted. What are the 
appropriate features and how to synthesize composite features useful to the recogni-
tion from primitive features? The answers to these questions are largely dependent on 
the intuitive instinct, knowledge, experience and the bias of human experts.  
 In this paper, co-evolutionary genetic programming (CGP) is employed to generate 
a composite operator vector whose elements are synthesized composite operators for 
object recognition. A composite operator is represented by a binary tree whose inter-
nal nodes represent the pre-specified primitive operators and leaf nodes represent the 
primitive features, it is a way of combining primitive features. With each element 
evolved by a sub-population of CGP, a composite operator vector is cooperatively 
evolved by all the sub-populations. By applying composite operators, corresponding 
to each sub-population, to the primitive features extracted from images, we obtain 
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composite feature vectors. These composite feature vectors are fed into a classifier for 
recognition. The primitive features are real numbers and designed by human experts 
based on the type of objects to be recognized. It is worth noting that the primitive 
operators and primitive features are decoupled from the CGP mechanism that gener-
ates composite operators. The users can tailor them to their own particular recognition 
task without affecting the other parts of the system. Thus, the method and the recogni-
tion system are flexible and can be applied to a wide variety of images. 

2   Motivation and Related Research 

• Motivation: The recognition accuracy of an automatic object recognition system 
is determined by the quality of the feature set.  Usually, it is the human experts who 
design the features to be used in recognition. Handcrafting a set of features requires 
human ingenuity and insight into the characteristics of the objects to be recognized 
and in general, it is a very time consuming and expensive process due to the large 
number of features available and the correlations among them. Thus, automatic 
synthesis of composite features useful to the recognition from simple primitive 
features becomes extremely important. The process of synthesizing composite 
features can often be dissected into some primitive operations on primitive features. 
However, the ways of combining primitive features are almost infinite and human 
experts, relying on their knowledge, rich experience and limited by their speed and 
bias, can try only a small number of conventional combinations. Co-evolutionary 
genetic programming, on the other hand, may try many unconventional combinations 
and in some cases these unconventional combinations yield exceptionally good 
results. Also, the inherent parallelism of CGP and the speed of computers allow much 
more combinations to be considered by CGP compared to that by human experts and 
this greatly enhances the chances of finding good composite features. 

• Related Research: Genetic programming (GP) has been used in image process-
ing, object detection and recognition. Poli et al. [1] use GP to develop image filters to 
enhance and detect features of interest or to build pixel-classification-based segmenta-
tion algorithms. Bhanu and Lin [2] use GP for object detection and ROI extraction. 
Howard et al. [3] apply GP for automatic detection of ships in low resolution SAR 
imagery. Roberts and Howard [4] use GP to develop automatic object detectors in 
infrared images. Stanhope and Daida [5] use GP for the generation of rules for tar-
get/clutter classification and rules for the identification of objects. Unlike the work of 
Stanhope and Daida [5], the primitive operators in this paper are not logical operators, 
but operators that work on real numbers. They use GP to evolve logical expressions 
and the final outcome of the logical expressions determines the type of object under 
consideration (for example, 1 means target and 0 means clutter); we use CGP to 
evolve composite feature vectors for a Bayesian classifier and each sub-population is 
responsible for evolving a specific composite feature in the composite feature vector. 
The classifier evolved by GP in their system can be viewed as a linear classifier, but 
the classifier evolved by CGP here is a Bayesian classifier determined by the compos-
ite feature vectors learned from training images.  
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3   Technical Approach 

In our CGP-based approach, individuals are composite operators and all possible 
composite operators form the huge search space, leading to the extreme difficulty in 
finding good composite operators unless one has a smart search strategy. The system 
we developed is divided into training and testing parts, which are shown in Fig. 1(a) 
and (b), respectively. During training, CGP runs on training images and evolves com-
posite operators to obtain composite features. Since Bayesian classifier is completely 
determined by the composite feature vectors learned from training images, so both the 
composite features and the classifier are learned by CGP. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1   Design Considerations  

• The Set of Terminals:  The set of terminals used in this paper are 20 primitive 
features used in [6]. The first 10 of them are designed by MIT Lincoln lab to capture 
the particular characteristics of synthetic aperture radar (SAR) imagery and are found 
useful for object detection. The other 10 features are common features used widely in 
image processing and computer vision. The 20 features are: (1) standard deviation of 
image; (2) fractal dimension and (3) weight rank fill ratio of brightest scatterers; (4) 
blob mass; (5) blob diameter; (6) blob inertia; (7) maximum and (8) mean values of 
pixels within blob; (9) contrast brightness of blob; (10) count; (11) horizontal, (12) 
vertical, (13) major diagonal and (14) minor diagonal projections of blob; (15) maxi-
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(a) Training  Learning composite feature vectors and Bayesian classifier 

Testing Image Feature Extractor Primitive Features 

Composite 
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tion 

            (b) Testing  Applying learned composite feature vectors and Bayesian classifier to a test image 

Fig. 1. System diagram for object recognition using co-evolutionary genetic programming  
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mum, (16) minimum and (17) mean distances of scatterers from their centroid; (18) 
moment µ20, (19) moment µ02 and (20) moment µ22 of scatters. 

• The Set of Primitive Operators: A primitive operator takes one or two real 
numbers, performs a simple operation on them and outputs the result. Currently, 12 
primitive operators shown in Table 1 are used, where a and b are real numbers and 
input to an operator and c is a constant real number stored in an operator. 

 
 
 
 
 
 
 
 
 
 
 

 

• The Fitness Measure: the fitness of a composite operator vector is computed in 
the following way: apply each composite operator of the composite operator vector on 
the primitive features of training images to obtain composite feature vectors of train-
ing images and feed them to a Bayesian classifier. The recognition rate of the classi-
fier is the fitness of the composite operator vector. To evaluate a composite operator 
evolved in a sub-population (see Fig. 2), the composite operator is combined with the 
current best composite operators in other sub-populations to form a complete compos-
ite operator vector where composite operator from the ith sub-population occupies the 
ith position in the vector and defines the fitness of the vector as the fitness of the com-
posite operator under evaluation. The fitness values of other composite operators in 
the vector are not affected. When sub-populations are initially generated, the compos-
ite operators in each sub-population are evaluated separately without being combined 
with composite operators from other sub-populations. After each generation, the com-
posite operators in the first sub-population are evaluated first, then the composite 
operators in the second sub-population and so on. 
 

 

 

 
 
 

Table 1. Twelve primitive operators 

Primitive 
Operator 

Description Primitive 
Operator 

Description 

ADD (a, b) Add a and b. ADDC (a, c) Add constant value c to a. 
SUB (a, b) Subtract b from a. SUBC (a, c) Subtract constant value c from a. 
MUL (a, b) Multiply a and b. MUL (a, c) Multiply a with constant value c. 
DIV (a, b) Divide a by b. DIVC (a, c) Divide a by constant value c. 
MAX2 (a, b) Get the larger of a and b. MIN2 (a, b) Get the smaller of a and b. 
SQRT (a) Return a if a ≥ 0; other-

wise, return a−− . 

LOG (a) Return log(a) if a ≥ 0; otherwise, return – 
log(-a). 

 

Subpopulation 1:  
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Subpopulation n:  
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Fig. 2. Computation of fitness of  jth composite operator of  ith subpopulation  
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• Parameters and Termination: The key parameters are the number of sub-
population N, the population size M, the number of generations G, the crossover and 
mutation rates, and the fitness threshold. GP stops whenever it finishes the specified 
number of generations or the performance of the Bayesian classifier is above the fit-
ness threshold. After termination, CGP selects the best composite operator of each 
sub-population to form the learned composite operator vector to be used in testing. 

3.2   Selection, Crossover, and Mutation 

The CGP searches through the space of composite operator vectors to generate new 
composite operator vectors. The search is performed by selection, crossover and mu-
tation operations. The initial sub-populations are randomly generated. Although sub-
populations are cooperatively evolved (the fitness of a composite operator in a sub-
population is not solely determined by itself, but affected by the composite operators 
from other sub-populations), selection is performed only on composite operators 
within a sub-population and the crossover is not allowed between two composite op-
erators from different sub-populations. 

• Selection: The selection operation involves selecting composite operators from 
the current sub-population. In this paper, we use tournament selection. The higher the 
fitness value, the more likely the composite operator is selected to survive. 

• Crossover: Two composite operators, called parents, are selected on the basis of 
their fitness values. The higher the fitness value, the more likely the composite opera-
tor is selected for crossover. One internal node in each of these two parents is ran-
domly selected, and the two subtrees rooted at these two nodes are exchanged between 
the parents to generate two new composite operators, called offspring. It is easy to see 
that the size of one offspring (i.e., the number of nodes in the binary tree representing 
the offspring) may be greater than both parents if crossover is implemented in such a 
simple way. To prevent code bloat, we specify a maximum size of a composite opera-
tor. If the size of one offspring exceeds the maximum size, the crossover is performed 
again until the sizes of both offspring are within the limit.  

• Mutation: To avoid premature convergence, mutation is introduced to randomly 
change the structure of some composite operators to maintain the diversity of sub-
populations. Candidates for mutation are randomly selected and the mutated compos-
ite operators replace the old ones in the sub-population. There are three mutations 
invoked with equal probability: 

1. Randomly select a node of the composite operator and replace the subtree 
rooted at this node by another randomly generated binary tree 

2. Randomly select a node of the composite operator and replace the primitive 
operator stored in the node with another primitive operator randomly selected 
from the primitive operators of the same number of input as the replaced one.  

3. Randomly selected two subtrees of the composite operator and swap them. Of 
course, neither of the two sub-trees can be the sub-tree of the other. 
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3.3 Generational Co-evolutionary Genetic Programming 

Generational co-evolutionary genetic programming is used to evolve composite opera-
tors. The GP operations are applied in the order of crossover, mutation and selection. 
Firstly, two composite operators are selected on the basis of their fitness values for 
crossover. The two offspring from crossover are kept aside and won’t participate in 
the following crossover operations on the current sub-population. The above process 
is repeated until the crossover rate is met. Then, mutation is applied to the composite 
operators in the current sub-population and the offspring from crossover. Finally, 
selection is applied to select some composite operators from the current sub-
population and combine them with the offspring from crossover to get a new sub-
population of the same size as the old one. In addition, we adopt an elitism replace-
ment method that keeps the best composite operator from generation to generation.  

• Generational Co-evolutionary Genetic Programming: 

0. randomly generate N sub-populations of size M and evaluate each composite 
operator in each sub-population individually. 

1. for gen = 1 to generation_num do 
2. for i =1 to N do  
3. keep the best composite operator in sub-population Pi. 
4. perform crossover on the composite operators in Pi until the crossover rate 

is satisfied and keep all the offspring from crossover. 
5. perform mutation on the composite operators in Pi and the offspring  from 

crossover with the probability of  mutation rate. 
6. perform selection on Pi to select some composite operators and combine 

them with the composite operators from crossover to get a new sub-
population Pi’ of the same size as Pi.  

7. evaluate each composite operator Cj in Pi’. To evaluate Cj, select the cur-
rent best composite operator in each of the other sub-population, combine 
Cj with those N-1 best composite operators to form a composite operator 
vecter where composite operator from kth sub-population occupy the kth 
position in the vector (k=1, …, N). Run the composite operator vector on the 
primitive features of the training images to get composite feature vectors 
and use them to build a Bayesian classifier. Feed the composite feature vec-
tors into the Bayesian classifier and let the recognition rate be the fitness of 
the composite operator vector and the fitness of Cj.  

8. let the best composite operator from Pi  replace the worst composite opera-
tor in Pi’ and  let Pi = Pi’ 

9. Form the composite operator vector consisting of the best composite opera-
tors from corresponding sub-populations and evaluate it. If its fitness is 
above the fitness threshold, goto 10. 

           endfor // loop 2 
 endfor  // loop 1 

10. select the best composite operator from each sub-population to form the learned  
composite operator vector and output it. 
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4   Experiments 

Various experiments are performed to test the efficacy of CGP in generating compos-
ite features for object recognition. In this paper, we show some selected examples. All 
the images used in experiments are real synthetic aperture radar (SAR) images and 
they are divided into training and testing images. 20 primitive features are extracted 
from each SAR image. CGP runs on primitive features from training images to gener-
ate a composite operator vector and a Bayesian classifier. The composite operator 
vector and the Bayesian classifier are tested against the testing images. It is to be 
noted that the ground truth is used only during training. The parameters of CGP used 
throughout the experiments are sub-population size (50), number of generations (50), 
fitness threshold (1.0), crossover rate (0.6) and mutation rate (0.05). The maximum 
size of composite operators is 10 in experiment 1 and 20 in experiment 2. The con-
stant real number c stored in some primitive operators is from –20 to 20. For the pur-
pose of objective comparison, CGP is invoked ten times for each experiment with the 
same set of parameters and the same set of training images. Only the average per-
formances are used for comparison 

• Experiment 1 – Distinguish Object from Clutter:  From MSTAR public real 
SAR images, we generate 1048 SAR images containing objects and 1048 SAR im-
ages containing natural clutter. These images have size 120×120 and are called object 
images and clutter images, respectively. An example object image and clutter image 
are shown in Fig. 3, where white spots indicate scatterers with high magnitude. 300 
object images and 300 clutter images are randomly selected as training images and 
the rest are used in testing.  
 
 
 
 
 
 
 
 
 
 
     First, the efficacy of each primitive feature in discriminating the object from clutter 
is examined. Each primitive feature from training images is used to train a Bayesian 
classifier and the classifier is tested against the same kind of primitive features from 
the testing images. The results are shown in Fig. 4. Feature contrast brightness of blob 
(9) is the best one with recognition rate 0.98. To show the efficacy of CGP in synthe-
sizing effective composite features, we consider three cases: only the worst two primi-
tive features (blob inertia (6) and mean values of pixels within blob (8)) are used by 
CGP; five bad primitive features (blob inertia (6), mean values of pixels within blob 
(8), moments µ20 (18), µ02 (19) and µ22 (20) of scatters) are used by CGP; 10 common 
features (primitive features 11 to 20) not specifically designed to deal with SAR im-
ages are used by CGP during synthesis. The number of sub-populations is 3, which 

(b) A typical natural 
clutter image 

(a) A typical  
object image

   Fig. 3. Example target and clutter SAR images
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means the dimension of the composite feature vector is 3. The results are shown in 
Fig. 5, where the horizontal coordinates are the number of primitive features used in 
synthesis and the vertical coordinates are the recognition rate. The bins on the left 
show the training results and those on the right show the testing results. The numbers 
above the bins are the average recognition rates over all ten runs. Then the number of 
sub-population is increased from 3 to 5. The same 2, 5 and 10 primitive features are 
used as building blocks by CGP to evolve composite features. The experimental re-
sults are shown in Fig. 6. Table 2 shows the maximum and minimum recognition rates 
in these experiments, where tr and te mean training and testing and max and min stand 
for the maximum and minimum recognition rates. 

 

 
Fig. 5. Experimental results with      Fig. 6. Experimental results with 
          3 sub-populations      5 sub-populations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     From Figs. 5 and 6, it is obvious that composite feature vectors synthesized by 
CGP are very effective in distinguishing object from clutter. They are much better 
than the primitive features from which they are built. Actually, if both features 6 and 8 
jointly form 2-dimensional primitive feature vectors for recognition, the recognition 
rate is 0.668; if features 6, 8, 18, 19, and 20 jointly form 5-dimensional primitive 
feature vectors, the recognition rate is 0.947; if all the last 10 primitive features are 
used, the recognition rate is 0.978. The average recognition rates of composite feature 
vectors are better than all the above results.  Figure 7 shows the composite operator 
vector evolved by CGP maintaining 3 sub-populations in the 6th run when 5 primitive 
features are used, where PFi means the primitive feature i and so on. 

(MULC (MULC (SUBC 
(SQRT (LOG PF8))))) 

(a) Composite operator 1 

(DIV (DIVC (DIVC 
(DIV PF18 PF6))) PF8)  

(b) Composite operator 2 

(SQRT PF8) 

(c) Composite operator 

Fig. 7. Composite operator vector learned by CGP 

Table 2. The maximum and minimum recognition rate 

3 sub-populations 5 sub-populations 

    2    5    10     2     5    10 

 

Tr Te Tr Te Tr Te Tr Te Tr Te Tr Te 

Max 0.992 0.991 0.995 0.995 0.978 0.989 0.992 0.984 0.995 0.995 0.983 0.992 
Min 0.988 0.979 0.978 0.974 0.965 0.979 0.988 0.98 0.993 0.987 0.972 0.979 
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• Experiment 2 – Recognize Objects: Five objects (BRDM2 truck, D7 bulldozer, 
T62 tank, ZIL131 truck and ZSU anti-aircraft gun) are used in the experiments. For 
each object, we collect 210 real SAR images under 15°-depression angle and various 
azimuth angles between 0° and 359° from MSTAR public data. Fig. 8 shows one 
optical and one SAR image of each object. From Fig. 8, we can see that it is not easy 
to distinguish SAR images of different objects. Since SAR images are very sensitive 
to azimuth angles and training images should represent the characteristics of the object 
under various azimuth angles, 210 SAR images of each object are sorted in the as-
cending order of their corresponding azimuth angles and the first, fourth, seventh, 
tenth SAR images and so on are selected for training. Thus, for each object, 70 SAR 
images are used in training and the rest are used in testing.  

 
 
 
 
 
 
 
 
 
 
 
 
 

1) Discriminate three objects: CGP synthesizes composite features to recognize 
three objects: BRDM2, D7 and T62. First, the efficacy of each primitive feature in 
discriminating these three objects is examined. The results are shown in Fig. 9. Fea-
ture mean values of pixels within blob (8) is the best primitive feature with recognition 
0.73. Three series of experiments are performed in which CGP maintains 3, 5 and 8 
sub-populations to evolve 3, 5 and 8-dimensional composite features, respectively. 
The primitive features used in the experiments are all the 20 primitive features and the 
last 10 primitive features. The maximum size of the composite operators is 20. The 
experimental results are shown in Figs. 10, 11 and 12, where 10f and 20f mean primi-
tive features 11 to 20 and all the 20 primitive features, respectively. The bins on the 
left show the training results and those on the right show the testing results. The num-
bers above the bins are the average recognition rates over all ten runs. Table 3 shows 
the maximum and minimum recognition rates in these experiments. 
      From Figs. 10, 11 and 12, it is clear that composite feature vectors synthesized by 
CGP are effective in recognizing objects. They are much better than primitive features 
used by CGP to synthesize composite features. Actually, if all 20 primitive features 
are used jointly to form 20-dimensional primitive feature vectors for recognition, the 
recognition rate is 0.96. This result is a little bit better than the average performance 
shown in Fig 10 (0.94), but the dimension of the feature vector is 20. However, the 
dimension of composite feature vectors in Figs 10 and 11 are just 3 and 5 respectively. 
If we increase the dimension of composite feature vector from 3 to 5 and 8, CGP re-

(a) BRDM2 (e) ZSU (d) ZIL (c) T62 (b) D7 
Fig. 8. Five objects and their SAR images used for recognition 
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sults are better. If the last 10 primitive features are used, the recognition rate is 0.81. 
From these results, we can see that the effectiveness of the primitive features has an 
important impact on the effectiveness of the composite features synthesized by CGP. 
With effective primitive features in hand, CGP will synthesize better composite fea-
tures. Fig. 13 shows the composite operator vector evolved by CGP maintaining 5 
sub-populations in the 10th run when all 20 primitive features are used. The size of the 
first and second composite operators is 20. The size of the third composite operator is 
9 and the size of the last one is 15. The fourth composite operator is very simple, just 
selects the primitive feature 11. The primitive features used by the synthesized com-
posite operator vector are primitive features 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 18, 19, 20. If 
all these 13 primitive features directly form a 13-dimensional primitive feature vector 
for recognition, the recognition rate is 0.96. 
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Fig. 9. Recognition rates of 20 primitive features 
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Fig. 10. Recognition rate with 3 sub-populations 
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  Fig. 11. Recognition rate with 5 sub-populations 
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Fig. 12. Recognition rate with 8 sub-populations 

(DIV (MULC (SUB (SUB (DIVC (SQRT 
PF6)) (MULC (SUB PF18 (MULC (SUB 
PF18 (SQRT PF4)))))) (SQRT PF6))) (MIN2 
PF12 PF19))

(DIV (MULC (ADD (ADDC (MULC (MUL 
(MIN2 (ADDC (DIV PF20 PF4)) PF14) 
PF3))) (LOG (ADDC (DIV PF20 PF4))))) 
(DIVC PF4)) 

(a) Composite operator 1 (b) Composite operator 2 

(DIV (MIN2 (SUBC (SUBC 
PF11)) (MAX2 PF7 PF8)) 
PF8) 

(PF11) 

(LOG (ADDC (LOG (DIV (SUBC (LOG 
(DIV (SUBC (LOG PF5)) (SUBC 
PF5)))) (MUL PF2 PF5))))) 

(c) Composite operator 3 (d) Composite operator 4 (e) Composite operator 5 

Fig. 13. Composite operator vector learned by CGP for 5 sub-populations 
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Table 3. The maximum and minimum recognition rate 

3 sub-populations 5 sub-populations 8 sub-populations 
  10f   20f   10f    20f   10f    20f 

 

Tr Te Tr Te Tr Te Tr Te Tr Te Tr Te 
Max  0.91 0.86 0.98 0.97 0.94 0.88 0.995 0.97 0.98 0.9 1.0 0.98 
Min  0.85 0.83 0.95 0.92 0.91 0.84 0.98 0.94 0.95 0.85 0.99

5 
0.95 

2) Discriminate Five Objects: With more objects added, the recognition becomes 
more difficult. This can be seen from Fig. 14, which shows the efficacy of each primi-
tive feature in discriminating these five objects. Feature blob mass (4) is the best 
primitive feature with recognition 0.49. If all 20 primitive features are used jointly to 
form 20-dimensional primitive feature vectors for recognition, the recognition rate is 
0.81; if only the last 10 primitive features are used, the recognition rate is 0.62. This 
number is much lower, since the last 10 features are common features and are not 
designed with the characteristics of SAR images taken into consideration. 
     Two series of experiments are performed in which CGP maintains 5 and 8 sub-
populations to evolve 5 and 8-dimensional composite features for recognition. The 
primitive features used in the experiments are all the 20 primitive features and the last 
10 primitive features. The maximum size of composite operators is 20. The experi-
mental results are shown in Fig. 15. The left two bins in columns 10f and 20f corre-
spond to 5 sub-populations and the right two bins correspond to 8 sub-populations. 
The bins showing the training results are to the left of those showing testing results. 
The numbers above the bins are the average recognition rates over all ten runs. Table 
4 shows the maximum and minimum recognition rates in these experiments. 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
     From Fig.15, we can see that when the dimension of the composite feature vector is 
8, the performance of the composite features is good and it is better than using all 20 
(0.81) or 10 (0.62) primitive features from which the composite features are built. 
When the dimension of the composite feature vector is 5, the recognition is not satis-
factory when using just 10 common features as building blocks. Also, when the di-
mension is 5, the average performance is a little bit worse than using all 20 or 10 
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Fig. 15. Recognition rate with 5 (left two bins)  
       and 8 (right two bins) sub-populations 

  Table 4. The maximum and minimum recognition rate 

5 sub-population 8 sub-population 
   10f     20f    10f     20f 

 

Tr Te Tr Te Tr Te Tr Te 
Max 0.71 0.63 0.88 0.8 0.80 0.65 0.94 0.85 
Min 0.65 0.55 0.83 0.73 0.75 0.62 0.91 0.80 
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primitive features, but the dimension of composite feature vector is just one-fourth or 
half of the number of primitive features, saving a lot of computational burden in rec-
ognition. When all 20 primitive features are used and CGP has 8 sub-populations, the 
composite operators in the best composite operator vector evolved have sizes 19, 1, 
16, 19, 15, 7, 16 and 6, respectively. The primitive features used by the synthesized 
composite operator vector are primitive features 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 
16, 18, 19 and 20. If all these 16 primitive features directly form a 16-dimensional 
primitive feature vector for recognition, the recognition rate is 0.80, which is lower 
than the average performance of the composite feature vector shown in Fig. 15. 

• Discussion: The above experiments show that CGP is a viable tool to synthesize 
effective composite features from primitive features for object recognition and the 
learned composite features outperform the primitive features or any combination of 
primitive features from which they are evolved. The effectiveness of composite fea-
tures learned by CGP is dependent on the effectiveness of primitive features. The 
usefulness of CGP is that it can evolve composite features that are more effective than 
the primitive ones upon which they are evolved. To achieve the same recognition rate, 
the number of composite features needed is smaller than the number of primitive fea-
tures needed (one-fourth or half), thus, reducing the computational expenses during 
run-time recognition. 

5   Conclusions 

In this paper, CGP is used to synthesize composite features for object recognition. Our 
experimental results using real SAR images show that CGP can evolve composite 
features that are more effective than the primitive features upon which they are built. 
To achieve the same recognition performance of primitive features, fewer composite 
features are needed and this reduces the computational burden during recognition. 
However, primitive features still have a significant impact on the effectiveness of the 
evolved composite features. How to let CGP evolve effective composite features using 
general primitive features is the focus of our future research.  
 
Acknowledgment. This research is supported by the grant F33615-99-C-1440. The 
contents of the information do not necessarily reflect the position or policy of the 
U. S. government. 

References 
1. R. Poli, “Genetic programming for feature detection and image segmentation,” in Evolu-

tionary Computation, T.C. Forgarty (Ed.), pp. 110–125, 1996. 
2. B. Bhanu and Y. Lin, “Learning composite operators for object detection,” Proc. Genetic 

and Evolutionary Computation Conference, pp. 1003–1010, July, 2002.  
3. D. Howard, S.C. Roberts, and R. Brankin, “Target detection in SAR imagery by genetic 

programming,” Advances in Engg. Software, vol. 30, no. 5, pp. 303–311, May 1999. 
 
 



Learning Features for Object Recognition         2239 

 

4. S.C. Roberts and D. Howard, “Evolution of vehicle detectors for infrared line scan im-
agery,” Proc. Evolutionary Image Analysis, Signal Processing and Telecommunications, 
First European Workshops, pp. 110–125, Springer-Verlag, 1999. 

5. S.A. Stanhope and J. M. Daida, “Genetic programming for automatic target classification 
and recognition in synthetic aperture radar imagery,” Proc. Conference. Evolutionary Pro-
gramming VII, pp. 735–744, 1998. 

6. B. Bhanu and Y. Lin, “Genetic algorithm based feature selection for target detection in 
SAR images,” Image and Vision Computing, 2003.  


	1 Introduction
	2 Motivation and Related Research
	3 Technical Approach
	3.1 Design Considerations
	3.2 Selection, Crossover, and Mutation
	3.3 Generational Co-evolutionary Genetic Programming

	4 Experiments
	5 Conclusions

