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Abstract. Evolutionary Testing (ET) has been shown to be very successful in 
testing real world applications [16]. However, it has been pointed out [11], that 
further research is necessary if flag variables appear in program expressions. 
The problems increase when ET is used to test state-based applications where 
the encoding of states hinders successful evolutionary tests. This is because the 
ET performance is reduced to a random test in case of the use of flag variables 
or variables that encode an enumeration type.  
The authors have developed an ET System to provide easy access to automatic 
testing. An extensive set of programs has been tested using this system [4], 
[16]. This system is extended for new areas of software testing and research has 
been carried out to improve its performance. This paper introduces a new ap-
proach for solving ET problems with flag conditions. The problematic con-
structs are explained with the help of code examples originally found in large 
real world applications. 

1 Introduction to the Flag Problem 

Evolutionary Structural Testing has to generate a set of test data for a given test object 
in order to obtain a high coverage of the program structures. The automatic process 
creates several test aims, which are tried to be executed in separate search processes. 
Test aims for statement coverage are the statements of the test object. Each search to 
solve a test aim is guided by a fitness function. This function defines numerically the 
proximity of a test datum to the current test aim. 

The function uses the values examined at the condition statements during the pro-
gram execution. For instance, the instrumentation of an equivalence condition on a 
and b will report the distance of a and b as fitness. A very small distance results in a 
very good fitness. This function guides the search to a equals b. 

In the case of flag values, the fitness function is simply a Boolean function returning 
only one poor fitness value for all test data resulting in the undesired flag value. The 
Boolean fitness function does not guide at all the search to a desired solution and 
results in an evolutionary test behaving like a random test. 

Fig. 1 shows two fitness landscapes close to the solution of executing the test 
aim. On the left hand side a Boolean function created by flag variables is shown and, 
in contrast to that, the right hand side shows a local distance function formed by 
equivalence operators. The minimum of both functions is searched for. Whereas a 
solution for one value of the Boolean function is easily found, the solution leading to 
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the other Boolean value is very hard to find. This is different for the function created 
for the equivalence operators. Values for this function can be easily optimized. 
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Fig. 1. The diagram on the left shows a Boolean function and the diagram on the right shows a 
fitness landscape created by an equivalence operator of two double variables. 

It is very common to use flag variables in real world applications. Even code gen-
erators e.g. for matlab / simulink / stateflow [7] create code containing flags. This 
creates the problem of a Boolean-like function, which does not guide the search for 
test data. It also occurs when using variables that encode only a small subset of the 
integer type. This often emerges for variables defined as enumeration types. The 
measured distance between enumeration type elements does not help to find the right 
input to fulfill a condition that compares elements of this type. In this case the fitness 
function returns values that do not direct the search to the solution because the func-
tion only expresses that right or wrong values have been monitored. 

The authors would like to show that random search behavior can be avoided by 
using a new fitness function for flag conditions. This also works for enumeration type 
values. The improvement is using additional information about the flag assignments 
in a program. These assignments can be identified by static data flow analysis. 

2 Short Overview on Evolutionary Testing 

Evolutionary algorithms (EA) have been used for searching data for a wide range of 
applications. EA is an iterative search procedure using different operators to copy the 
behavior of biologic evolution. When using EA for a search problem it is necessary to 
define the search space and the objective function (fitness). The algorithms are im-
plemented in the widely used tool box GEAtbx [12]. It consists of a large set of opera-
tors e.g. real and integer parameter, migration and competition strategies. 

ET uses EA for automatic software testing. The different software test criterions 
formulate requirements for a test case set to be generated. The creation of such a test 
data set usually has to be carried out manually. Automatic software testing generates 
test data sets automatically, trying to fulfill the requirements in order to increase effi-
ciency and achieve considerable cost reduction [15]. 

This paper covers the automation of structural testing which is a white box test 
defining the quality of a test case set on the basis of the structural coverage of the test 
object. Evolutionary structural testing defines test aims and fitness functions to trans-
form the problem of generating a test case set into searches solved by EA [16]. The 
quality of the fitness function plays an important role for the success of this approach. 
Some research has carried out to improve the quality (e.g. [2], [9]). 
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ET works very well for many real world applications. However, ‘interesting test 
objects’, where even an experienced software tester will have problems finding a full 
covering test data set, are still a challenge for the original ET. This is often due to 
certain constructs in the programs, which are not taken into account by the fitness. 

3 The Approach to Testing Flag Conditions 

This section introduces the idea of improving the fitness function by means of addi-
tional information in case of flag variables appearing in the code. The goal is to de-
sign a fitness function with a better guidance of the search, so that test data generation 
for flag conditions is improved and does not result in a random search. 

The section is divided into subsections explaining the solution step by step. The 
paper ends with the analysis of a real world example and shows that the approach 
introduced helps gain full coverage of this test object. 

3.1 Direct Assignment of a Boolean Value  

The basic idea of the new approach will be explained first by using a simple example. 
The source code in Example 1 shows the assignment and the use of a flag variable 
within a nested if-then structure. 

Example 1: Usage of a flag assignment 

 1: flag = false; [ENTRY-NODE] 

 2: if (a==0) flag=true; /* flag assign */  [TARGET-NODE-1] 
 3: ...         /* no other assignments to this flag*/ 
 4: if (c == 4) { 
 5:    if (flag && b> c) /* contains a flag condition */ 
 6:       /* test aim */ [TARGET-NODE-2] 

The original ET approach will immediately reach a high coverage without, how-
ever, fully covering the structure. The last search is performed for the test aim at node 
6. The fitness function for this test aim is based on the control dependencies, which 
are created by the if-statements of line 4 and 5. This provides the search with good 
guidance for reaching the if-statement in line 5. However, the local distance there is a 
Boolean function and does not direct the search. 

The authors suggest a better fitness function, which makes use of the static analy-
sis of the test object. The use-definition-analysis returns the assignments in the code, 
which have an influence on the flag condition. The estimation of the use-definition-
chain ([1]) will return, that the flag assignment of line 2 is the only assignment influ-
encing the flag use of line 5. This information is the basis for a new fitness function 
which first guides the search to test data, which execute the flag assignment in line 2, 
and goes to the flag condition of line 5. 

A fitness function targeting two locations in the source code has been defined as a 
node-node-oriented fitness function in [16]. The test aim is split into two target nodes. 
The first target node is the assignment, the second one the original test aim.  

After applying the new fitness function, the test data searched for has to execute the 
assignment as well as the test aim. It is now explained how this changes the fitness 
function applied to Example 1. 
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• The original approach searches for “ c==4” and “flag=true && b>c”. 
This is created by the control dependency of the if-statements of line 4 and 5. Because of the 
last condition containing a flag an ET behaves like a random search. 

• The improvement searches for “a==0 “ and “c==4” and “flag=true && b>c” 
The first part is created by the control dependencies for the flag assignment of line 2 and the 
second part by the control dependencies for the test aim. This new fitness function directs the 
search to “a==0” in the first instance, automatically resulting in fulfilling the flag condition. 

The following shows a short overview of the evaluation for a node-node-oriented 
fitness. Evolutionary Structural Testing monitors the execution of the program under 
test. The monitoring result for each test data contains information on the execution 
path and the evaluation of the conditions during runtime. On the basis of this informa-
tion a fitness value has to be calculated. The original ET approach has introduced the 
idea of decisive branches and approximation levels assigned to the control flow graph 
of the test object. The approximation level at a decisive branch expresses the global 
distance to the test aim, whereas a local distance can be used to compare solutions 
with the same level reached. A detailed description on this can be found in [16]. 

test aim

desired assignment

1 2 3 4

5

Level 3

Level 2

Level 1

 
Fig. 2. Control flow graph of Example 1 with highlighted decisive branches and annotated 
approximation levels 

Approximation levels are assigned to all branches that create a control depend-
ency for the test aim. The dependencies can be calculated by standard algorithms (see 
[13]). For the node-node-oriented fitness function, it is necessary to estimate the de-
pendencies for progressing from entry node to target node 1 (for target nodes see 
Example 1, right hand side) and the dependencies progressing from target node 1 to 
target node 2. 

The assignment of the levels is performed by analyzing the possible execution or-
ders of the identified nodes. Nodes that come later in the execution path will achieve 
better approximation levels than nodes at the beginning of the paths. 

control dependencies for “entry-node” to “target node 1”: 
 node 2 
control dependencies for “target node 1” to “target node 2”: 
 node 4, node 5 
execution order of the identified nodes and assigned approximation levels: 
 Node 2 Level 3 
 Node 4 Level 2 
 Node 5 Level 1 

Fig. 3 shows a graphical interpretation of the approximation levels comparing the 
original (left hand side) and the new fitness evaluation approach (right hand side). 
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desired assignment

1 2 3 4

5
Level 3

1 2 3 4
Level 1

1 2 3 4

5

Level 11 2 3 4

5

Level 1
desired assignment

Fitness Level: 1

Fitness Level: 1 Fitness Level: 1

Fitness Level: 3

5

Level 3

 
Fig. 3. The original ET (left) estimates the same fitness for both test cases; the new approach 
(right) assigns a poor fitness for the path not executing the flag assignment (top) 

Whereas in the original approach only one decisive branch can be executed per 
execution path and test aim (because of the definition of the control dependency), it is 
necessary in the new approach to make sure that the first decisive branch (e.g. top 
right path) defines the fitness. This is due to the concatenation of the decisive 
branches of the two target nodes. A complete definition of the fitness calculation rules 
will be provided later in Definition 1 after all details have been explained. Fig. 4 
shows the experiment results. Two scales are used in the diagram, since the fitness 
values are of different value ranges. The original fitness for the selected test aim 
ranges from 0 to 2, and the new fitness has an increased range of [0, 3]. 

 

Fig. 4. The diagram shows the fitness of the best individual created by the EAs over all genera-
tions; the fitness function of the new approach guided a search so that the solution was found in 
Generation 130, whereas the original ET stagnates at fitness 0,4. 

 
With the new fitness function targeting the flag assignments the evolutionary test 

can be improved to reach a higher coverage for applications that use single flags with 
just one assignment. In the next steps the authors would like to show how this idea 
can be extended to solve more complicated flag uses and to provide a universal solu-
tion for any kind of flag definition and use. 

 

3.2 Dealing with Undesired Flag Assignments 
 
The previous subsection gave an example where the execution of the test aim de-
pended on a desired assignment. It is certain that in real world applications program 
code can include assignments that should not be executed to fulfill a test aim. 

Poor Test Case 

Better Test Case 
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A very simple source code showing this can be seen in Example 2. In order to 
execute the test aim a flag value “true” is necessary. For this reason, a solution that 
reaches the test aim cannot execute the flag assignment in line 2. 

Example 2: Source code containing an undesired flag assignment 

 1: flag = true; 
 2: if ( a!=0 || c>5 ) flag=false;/* avoid this assignment execution */ 
 3: switch (er) { 
 4: case 5:  
 5:   if (flag)  
 6:     /* test aim */ 

The original ET approach does not use information about the undesired assignment. 
For the original ET a high probability of the flag assignment execution results in a 
random search, because the fitness function does not take into account the condition 
at line 2 (it does not create a control dependency for the test aim). A static analysis of 
the program under test can be helpful in this situation. By using the information about 
undesired flag assignments it is possible to create a better fitness function. This func-
tion has to guide the search to not execute the identified flag assignment. The control 
dependencies of the undesired assignment will be used to define the new function, 
but, in contrast to the solution explained for desired flag assignments, the fitness is 
now based on the branches not leading to the assignment. 

 

test aim

undesired
assignment

1 2 3 4

65

Level 3 Level 2

Level 1

Level 2

 

Fig. 5. Control flow graph of the example with highlighted decisive branches. The branch 
leading to the undesired assignment is decisive and gets a poor approx. level. 

 
After applying the new fitness function, the test data that is searched for must not 

execute the assignment and then traverse the test aim. It is explained next how this 
changes the fitness function applied to Example 2. 

 The original approach searches for “er==5” and “flag=true”. 

This is because of the control dependency created by the switch- and if-statements of line 3 
and 5. The flag condition creates a Boolean fitness function. 

 The new approach is searching for “not (a!=0 || c > 5)” and “er==5” and “flag=true” 
The first part is created by the control dependencies for the flag assignment of line 2 and the 
second part by the control dependencies for the test aim at line 6. This new fitness function 
allows only solutions with “not (a!=0 || c > 5)” in the first instance (this will automatically 
result in fulfilling the flag condition of the second term). 

An experiment with the new fitness function is presented in Fig. 6. Again, the fitness 
curves have been made comparable by using two scales. The optimization using the 
original approach stagnates at value 0,4 because it does not find a solution which 
results in a flag value “true”. 
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Fig. 6. Diagram demonstrating the improvement of the search process; the original approach 
does not find a solution for the test aim (remains at fitness about 0,4) 

As shown by means of this example it is also possible to improve the original ET 
approach for test objects containing undesired flag assignment.  

 

3.3 Multiple Assignments to Flag Variables 
 
The examples shown in the previous sections only use single flag assignments. The 
approach is now extended for test objects with multiple flag assignments. To achieve 
this, the idea of include and exclude lists for flag assignments is introduced. The ex-
planations refer to Example 3. The test aim has been commented on and the desired 
and undesired flag assignments for this test aim have been marked in the source code.  

Applying static analysis for the example will return three flag definitions where 
the execution of one assignment is not desired for covering the test aim. All desired 
assignments will be collected in a so-called include-assignment list and the undesired 
ones will be placed on the corresponding exclude-assignment list. 

Example 3: Source code containing multiple flag assignments 

 1: flag = false; 
 2: If (a==0) flag = true; /* execute this */ 
 3: If (b==0) flag = true; /* or execute this */ 
 4: … 
 5: If (z > y) flag = false; /* do not execute ! */ 
 6: … 
 7: If (c==0) { 
 8:   If (flag) /* test aim: go here */ 

In order to obtain a solution with a higher structural coverage it is necessary for 
the fitness function to return good values for any test data that: 

- are close to or execute any of the include-assignments and  
- do not execute any of the exclude-assignments.  

All include-assignments have to be treated equally since it cannot be decided 
which of the assignments creates an executable solution for the test aim. Even with 
these new requirements for the fitness calculation is it possible to reuse the idea of 
approximation levels. Assigning the right levels to the nodes in the control flow graph 
and some additional calculation rules will result in fitness values that meet the re-
quirements. 
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To enable a fitness calculation for the suggested improvements, branches are ad-
ditionally defined as ’decisive’ (execution has an effect on fitness calculation). These 
are branches avoiding the execution of a desired flag assignment (Fig. 7 - highlighted 
branches of nodes 2 and 3) or branches leading to an undesired flag assignment 
(highlighted branch of node 3). If a path traverses one of those identified branches 
fitness has to be calculated because of the depending flag assignments. 

test aim

desired
assignment

1 2

8
Level 3

Level 2

Level 1

desired
assignment

3 4

Level 3

undesired
assignment

5 6

Lvl 3

7

 

Fig. 7. Decisive branches assigned with approximation levels 

The introduction of additional decisive branches makes new fitness calculation 
rules necessary, because some execution paths might run through several decisive 
branches. This cannot happen in the original ET. 

DEFINITION 1: FITNESS CALCULATION RULES 

1. first decisive branch temporarily determines the fitness value, fitness can 
only be changed again when rules 2 and 3 are enabled. 

2. within loops the best level over all iterations establishes the fitness value 
3. whenever a desired flag assignment is executed it fixes the temporary fitness 

value; only rule 4 can make this fitness invalid 
4. whenever an undesired flag assignment is executed it reactivates rule 1 and 

resets the fitness calculation. 

Some examples illustrating the usage of the rules will be described next (all refer-
ring to Example 3). If a test case misses the assignment of line 2 (rule 1 is enabled) 
and then executes the assignment of line 3, it will achieve a good fitness because of 
rule 3 (level 2). However, if the assignment of line 5 is executed afterwards, rule 4 is 
activated and fitness is set back to a poor value (level 3). A path that does not execute 
a decisive branch (highlighted in Fig. 7) and does not fulfill the condition of node 7 is 
assigned a fitness value of level 2. Last but not least, a test reaching line 8 and not 
having executed any decisive branch before will meet the test aim.  

It will be described next how the include- and exclude lists change the fitness func-
tion and how this affects the search process. Example 3 is used for descriptions. 

 The original ET searches for data fulfilling the condition “c==0” and “flag=true” 
This is because of the control dependency created by the if-statements of line 7 and 8. As de-
scribed previously, this fitness function will result in a random search. 

 The suggested improvement searches for a solution of the following term: 
“(a=0 || b=0) and not (z>y) and (c=0 && flag=true)” 

The first part is created by the include-assignments of the example (line 2 & 3); the second 
part comes from the exclude-assignment of line 5, and the last part is created by the control 
dependencies of the test aim. The new fitness function only allows solutions with “(a==0 or 
b==0) and not (z>y)” in the first instance, which automatically fulfill the flag condition. 
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The new fitness function targets the flag assignments, in this way enabling the evolu-
tionary test to find a high covering test data set for test objects that uses flags. The 
authors will show next that even flag uses within loops and expressions in flag as-
signments will no longer be a problem with this approach. 
 

3.4 Flag Assignments within Loops 
 
As mentioned previously, applications can also assign flag variables within loops. ET 
generally has no problems with loops appearing in the test object source code. The 
method can search for test data fulfilling test aims outside and inside any kind of 
loops. For this reason the new approach also works if the flag assignment is placed 
within a loop. The short Example 4 demonstrates this case. The flag assignment of 
line 3 is placed within a while-loop and the flag use is at line 4. 

Example 4: Flag assignment appearance within a loop 

 1: flag = false; 
 2: while (i<10) 
 3:   if (a[i]==0) flag = true; 
 4: if (flag)  
 5:   /* test aim */ 

In this situation, an evolutionary search for a solution of the test aim at line 5 re-
quires an improved fitness function because of the flag condition at line 3. The calcu-
lation of the include-assignments and exclude-assignments will return just one in-
clude-assignment in line 3 (line 1 is an initialization that is always executed). 

ET has no problem guiding the search to a test datum that executes the assignment 
of line 3. The new fitness function is the following logical term: 

 The suggested improvement is searching for a solution of the following term: 
“{in-any-iteration a[i]==0}“ and “flag==true” 

The operator “in-any-iteration” is created by the include assignments which is placed within 
the loop. The assignment needs to be executed only once. 

This new fitness function improves the evolutionary test. However, using the new 
fitness function implemented via approximation levels does not solve the problem of 
undesired flag assignment appearing in loops. This is because of the incomplete use 
of the monitored information. With the appearance of undesired-assignments inside 
loops it is necessary to define a fitness function which numerically evaluates the 
“in-all-iterations” operator. In Example 4 it is the fulfillment of the condition: 

 “{in-all-iteration not a[i]==0 } 

But an implementation using approximation levels with the rules of Definition 1 re-
sults in a fitness calculated on the basis of a transformed version of this term: 

 “not {in-any-iteration a[i]==0 }.  

This is logically equivalent to the first but results in a fitness function which is calcu-
lated on the basis of only one iteration that fulfills the condition: “a[i] = 0”. 
Analyzing the results of ET has shown that this will lead to a random search. The 
reason is that the fitness values do not take into account that a test datum with just one 
iteration meeting the condition “a[i] equals zero” is better than a test datum executing 
more iterations meeting this condition. A different implementation is needed here. 
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Using the new approach the ET can also be improved in the case of loops appear-
ing in the code. The new fitness function guides the search to execute desired flag 
assignments appearing within any kind of loop statements even if the loop is created 
by ‘goto’ statements. Only the appearance of undesired-assignments within loops still 
causes the flag problem for our implementation. 

 

3.5 Boolean Expressions Assigned to Flags 

The previous subsections have shown how to improve the fitness function if the flag 
is directly assigned to just one value. Real world applications often make use of as-
signing expressions to flags which are evaluated at runtime. Static analysis cannot 
distinguish which value these assignments return. Nevertheless, the approach can also 
handle this very common case. Example 5 shows one function code containing an 
assignment of an expression in line 1 and the use of the flag in line 3. 

Example 5: Flag assigned by a Boolean expression 

 1: flag = (a==0) || (b>0 && b<5); 
 2: ... 
 3:  if (flag) /* test aim */ 

Running the original ET approach will perform poorly with a low coverage. There 
is only a slim chance that it will find a solution. An ET inserting the Boolean expres-
sion at line 3 will work without any problems. Unfortunately the transformation is 
sometimes a difficult task (more details in [6]). A more simple transformation can 
help obtain a test object which can be handled with the approach explained in the 
previous subsections. This transformation changes the assignment expression into an 
if-then-else construct which behaves completely equivalent to the original code. The 
transformed version is shown in Example 6. This code has just two direct value as-
signments to the flag variable. 

Example 6: Transformed expression 

 1: if ( ( a == 0 ) || ( b > 0 && b < 5 ) ) 
    flag = true;   else   flag = false; 

Applying the new approach does not actually require such a transformation as 
seen in Example 6. Simple function calls inserted into the Boolean expression will 
obtain the information necessary for the fitness calculation, 
   e.g. flag=DistEqual(a,0) || DistGreater(b,0) && DistLess(b,5)). 

A fitness function using the data collected during the execution of the instrumented 
expression guides the search to a solution assigning the required flag value. 
The approach in [5] describes a similar idea for guiding the search by data dependen-
cies. All paths containing assignments relevant for the flag condition under test are 
generated and optimized in a sequence. However, our approach uses a single optimi-
zation considering all these paths simultaneously. [5] can solve the previously de-
scribed flag problems, but cannot guide the search in case of Boolean expressions. 

Up until now a general approach for guiding the search in the case of just one flag 
variable has been presented. The next subsection extends the applicability to a wider 
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range of test objects. The use of more than one flag takes place in many code gener-
ated examples. However, it becomes more difficult to guide the search in such cases.  

 

3.6 Using More than One Flag Variable 

The idea is extended for test problems with more than one flag variable in the condi-
tion that needs to be fulfilled. The next example shows an instance of this case.  

Example 7: Source code showing the use of more than one flag variable 

 1 If (a==0) initialized = true;  /* execute this*/ 
 2 If (b==0) has_been_fired = true;   /* and execute this */ 
 3 .... 
 4 if (initialized)  
 5 {  
 6    If (b==3) has_been_fired = true; /* or execute this */ 
 7 ..  
 8    If (has_been_fired )  
 9       /* test aim */ 

The idea of this example is that the test aim is only executed if the two flags are as-
signed in the right way before reaching the test aim. In real world applications any 
combination of flag assignments within nested conditions and loops are conceivable. 
The fitness evaluation has to check in parallel for each flag appearing in the code 
whether or not it is assigned in the desired way. That is why the original approach 
using approximation levels does not work properly. 

With the use of approximation levels and local distances the instrumentation can 
decide how close the test datum is to a flag assignment. This value (temporary flag 
fitness) can be stored together with the flag value at runtime. If the flag is assigned as 
necessary for the test aim this information is not used, but, if it is not, the temporary 
flag fitness will be used to calculate the overall fitness of the test datum. The fitness 
calculation is prepared by checking the control dependencies of all flag uses; estimat-
ing the exclude-assignment and include-assignment lists for each identified flag, cal-
culating the decisive branches on the basis of the include and exclude lists, and as-
signing the flag-approximation-levels to the branches independently for each flag. 
The assigned flag-approximation levels are used to calculate temporary flag fitness. 
This fitness forms the basis for the improved fitness function for multiple flag uses. 

DEFINITION 2: FITNESS CALCULATION RULES FOR MULTIPLE FLAGS 
1. temporary flag fitness is estimated as defined in the rules of Definition 1 for 

each flag appearing in the code 
2. upon reaching a control-dependent condition containing flags it is checked 

whether or not the flags are assigned in the desired way. If the flags are as-
signed correctly the usual fitness calculation proceeds. Whenever one or 
more flags are not assigned correctly, fitness is calculated using the corre-
sponding temporary flag fitness. 

Annotation. In the case of multiple flags occurring in a condition we suggest calcu-
lating an overall fitness using all temporary flag fitness values. See [2] for the rea-
sons for parallel condition optimization. 
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The implementation of this approach is quite complex and the calculation of the 
approximation levels requires some extra processing time. However, when applying 
the original approach on examples using multiple flags, the coverage reached with the 
original ET is worse. A related paper to this idea is [3]. A complete solution needs 
further research. 

 

3.7 Real World Example 

The authors have tested the approach using a real world application extracted from 
software for a car-controlling unit. The function under test is responsible for regulat-
ing the internal states of the energy control of a small sub-function within body and 
comfort electronics of a car. The function has 100 Loc and an if-then nesting level of 
5. It has 4 input parameters and internally uses two flags. For testing reasons the ini-
tial state and the input situation have been generated.  

The original approach did not find a solution for the condition statements using 
the two flags. Within a test of about 320.000 individuals it has reached a branch cov-
erage of about 90%. This happens with the standard settings of the ET-system using 
300 individuals in 6 populations with competition enabled. A maximum of 200 gen-
erations per test aim were allowed. The authors ran the same test with a bigger popu-
lation (700 individuals) and a later stopping criterion (max. 400 generations), but no 
improvements were noticeable. 

Using the new approach no problems were distinguished. One of the flags was as-
signed by an expression which had a very low probability evaluating to ‘true’. This 
was the reason why even more tests did not perform better using the original ap-
proach. The second flag was assigned within a nested if-then structure and tested later 
in a different nesting level. In the original ET approach there was only a very low 
chance of executing the flag assignment and the condition within one execution. The 
fitness function did not guide the search to this solution. 

The new approach used the standard EA settings and covered the test object fully 
after 60 generations and testing 14500 individuals. This is 5 percent of the workload 
of the original approach and leads to 100 % branch coverage. 

4 Conclusion 

Evolutionary Testing uses metaheuristic search methods to automate software testing 
aspects. The occurrence of flag variables has been pointed out to be problematic be-
cause of a poor guidance of the search at conditions containing flags. The authors 
introduce a new fitness function, which improves evolutionary structural testing in 
case of flag conditions. This function uses additional information on the flag assign-
ments occurring in the test object. The solution is explained by using short code ex-
amples extracted from real world applications. 

The introduced improvements cannot only solve the problem of flag variables, the 
authors argue that the test of sources containing enumeration type conditions, also 
known to be problematic, can be improved using the introduced approach. 

By using a fitness function that guides the search to variable assignments as well 
as variable uses it has been shown that the flag problem can be solved. We believe 
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that future research on sequence testing can reuse this idea. This is because in se-
quence testing state variables are assigned and used in different areas of a program 
and sometimes also in the different steps of a sequence. A fitness function guiding the 
search to the execution of state variable assignments and to the condition testing the 
state variable will perform better than the original ET. 
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