On the Locality of Representations

Franz Rothlauf

Working Paper 1/2003
January 2003

Working Papers in Information Systems 1

University of Mannheim
Department of Information Systems 1
D-68131 Mannheim/Germany
Phone +49 621 1811691, Fax +49 621 1811692
E-Mail: wifol@uni-mannheim.de
Internet: http://www.bwl.uni-mannheim.de/wifol

On the Locality of Representations

Franz Rothlauf

Dept. of Information Systems 1
University of Mannheim
D-68131 Mannheim/Germany
rothlauf@uni-mannheim.de

January 20, 2003

Abstract

It is well known that using high-locality representations is important for efficient evolutionary
search. This paper discusses in detail how the locality of a representation influences the difficulty
of a problem when using mutation-based search approaches. The results show that high-locality
representations do not change problem difficulty. In contrast, low-locality representations ran-
domize the search process and make problems that are easy for mutation-based search more
difficult and difficult problems more easy. Although low-locality representations increase the
performance of local search on difficult, deceptive problems this is not relevant for real-world
problems as we assume that most problems in the real-world are easy for mutation-based search.

1 Introduction

The locality of a representation describes how well genotypic neighbors correspond to phenotypic
neighbors. Previous work has indicated that high locality of a representation is necessary for
efficient evolutionary search [1, 2, 3, 4]. However, it remains unclear as to how the locality of a
representation influences problem difficulty in general, and if high-locality representations always
increase the performance of evolutionary search.

The purpose of this paper is to investigate how the locality of a representation influences problem
difficulty when using mutation as the main search operator. Furthermore, it discusses how the
locality of a representation depends on the used search operator and on the metric that is defined
on the phenotypic and genotypic search space. The results show that when using high-locality
representations the phenotypic and genotypic problem difficulty remain the same. The difficulty
of optimization problems does not change. Therefore, easy real-world problems can be solved by
evolutionary algorithms (EA) more efficiently when using high-locality representations. In contrast,
low-locality representations change problem difficulty. Such representations increase the difficulty
of problems which are easy for mutation-based search and reduce the difficulty of problems that
mislead mutation-based search.

The paper is structured as follows. In the following section we introduce genotypes and pheno-
types, introduce the locality of a representation, and discuss how mutation operators are based on
the metric that is defined on the search space. Section 3 focuses on the phenotype-fitness mapping.
It reviews some common measurements of problem difficulty and presents a classification of problem
difficulty which is based on the work of [5]. In section 4 we investigate how genotype-phenotype

mappings change problem difficulty when assigning genotypes to phenotypes and when using mu-
tation as the main search operator. It distinguishes between low and high-locality representations
and illustrates that when using a high-locality representation genotypic and phenotypic problem
difficulty are the same. In contrast, problem difficulty changes if low-locality representations are
used. The paper ends with concluding remarks.

2 Representations, Locality and Mutation Operators

The following section presents the prerequisites for our investigation. It decomposes the optimiza-
tion problem into a genotype-phenotype and a phenotype-fitness mapping, defines the locality of a
representation and discusses some properties of mutation-based search.

2.1 Genotypes, Phenotypes, and Fitness

When using some kind of representation, every optimization problem f can be decomposed into a
genotype-phenotype mapping f,, and a phenotype-fitness mapping f, [6].

We define @, as the genotypic search space where the genetic operators such as recombination
or mutation are applied to. An optimization problem on ®, could be formulated as follows: The
search space ®, is either discrete or continuous, and the function f(x) : &, — R assigns an element
in R to every element in the genotypic space ®,. The optimization problem is defined by finding
the unique global optimal solution & = maxges,(f()), where x is a vector of decision variables
(or alleles), and f(x) is a function which assigns a fitness value to every x. The vector & is the
global maximum.

When using a representation it must be distinguished between phenotypes and genotypes [7].
Thus, the optimization problem f can be decomposed into two parts. The first maps the genotypic
space ®, to the phenotypic space ®,, and the second maps ®, to the fitness space R. Using the
phenotypic space ®, we get:

fo(zg) : @y — Py,
fo(zp) : @ = R,

where f = fyo fy = fp(fg(2g)). The genotype-phenotype mapping f, is the used representation. f,
represents the fitness function and assigns a fitness value fy,(x,) to every individual x, € ®,. The
genetic operators are applied to the individuals in ®, that means on the level of genotypes [8, 9].

2.2 Metrics and Locality

In the following subsection we describe how the locality of a representation is based on the metric
used for ®, and ®,,.

When using search algorithms a metric has to be defined on the search space . Based on the
metric the distance dg, z, between two individuals x, € ® and x;, € ® describes how similar the
two individuals are. The larger the distance, the more different two individuals are. In general,
different metrics can be defined for the same search space. Different metrics result in different
distances and different measurements of the similarity of solutions.

Two individuals are neighbors if the distance between two individuals is minimal. For exam-
ple, when using the Hamming metric [10] for binary strings the minimal distance between two
individuals is d = 1. Therefore, two individuals x, and x; are neighbors if the distance dg, 4, = 1.

If we use a representation f, there are two different search spaces, ®, and ®,. Therefore,
different metrics can be used for the phenotypic and the genotypic search space. In general, the

metric used on the phenotypic search space ®, is determined by the specific problem that should
be solved and describes which problem solutions are similar to each other. In contrast, the metric
defined on @, is not given a priori but depends on the used genotypes. As different genotypes can
be used to represent the same phenotypes, different metrics can be defined on ®,. Therefore, in
general, different metrics are used for ®, and ®, which imply a different neighborhood structure
in ®, and ®,. For example, when encoding integers using binary strings the phenotype z} =5 has
two neighbors, zf = 6 and 2 = 4. When using the Hamming metric, the corresponding binary
string 2 = 101 has three different neighbors, 25 = 001, z§ = 111, and «f = 100 [11].

The locality of a representation describes how well neighboring genotypes correspond to neigh-
boring phenotypes. The locality of a representation is high if all neighboring genotypes correspond
to neighboring phenotypes. In contrast, the locality of a representation is low if some neighboring
genotypes do not correspond to neighboring phenotypes. Therefore, the locality d,, of a represen-

tation can be defined as
dm = Z |d%1,€l}7 - d7g’mn|’

P — AP
dwi »E j 7dmin

where dﬁi@j is the phenotypic distance between the phenotypes x; and x;, d%iywj is the genotypic
distance between the corresponding genotypes, and d? . . resp. dY . is the minimum distance
between two (neighboring) phenotypes, resp. genotypes. Without loss of generality we want to
assume that d? . =dP . . For d,,, = 0 all genotypic neighbors correspond to phenotypic neighbors
and the encoding has perfect locality.

We want to emphasize that the locality of a representation depends not only on the represen-
tation f,, but also on the metric that is defined on ®, and the metric that is defined on ®,. f,
only determines which phenotypes are represented by which genotypes and says nothing about the
similarity between solutions. Before we are able to talk about the locality of a representation a

metric must be defined on ®, and ®,,.

2.3 Mutation-based Search

In the following subsection we briefly discuss how mutation operators are based on the metric that
is used for the genotypic space ®,.

Based on the metric defined on the genotypic search space ®,, search operators like mutation
can be defined. In EAs and most of the individual-based search heuristics like simulated annealing,
tabu search, and others the search operator mutation is designed to create new solutions (offspring)
with similar properties as its/their parent(s) [12]. In most local search methods mutation creates
offspring that have a small or sometimes even minimal distance to their parents (for example the
bit-flipping operator for binary representations). Therefore, mutation operators and metrics can
not be developed independently of each other but determine each other. A metric defines the
mutation operator and the used mutation operator determines the metric. As the search operators
are applied to the genotypes, only the metric that is used on ®, is relevant for the definition of
mutation operators.

The basic idea behind using mutation-based search approaches is that the structure of the fitness
landscape should guide the search heuristic to the high-quality solutions [13] and that the optimal
solution can be found by performing small iterated changes. It is assumed that the high-quality
solutions are not isolated in the search space but grouped together (compare [14]). Therefore,
better solutions can easily be found by searching around already found good solutions. The search
steps must be small because too large search steps would result in a randomization of the search,
and guided search around good solutions would become impossible. In contrast, when using search

operators that perform large steps in the search space it would not be possible to find better
solutions by searching around already found good solutions but the search algorithm would jump
randomly around the search space.

3 Phenotype-Fitness Mappings

To be able to investigate how the locality of a representation influences the difficulty of problems
for mutation-based search we summarize in subsection 3.1 some existing measurements of problem
difficulty. Consequently, we review briefly in subsection 3.2 a classification of problem difficulty
which we want to use in section 4 for our investigations.

As described in subsection 2.1 the difficulty of a problem depends on the phenotype-fitness
mapping f,. fp determines the fitness of the solutions. Furthermore, problem difficulty depends
on the metric that is defined on the phenotypic search space ®,. The metric defined on ®, de-
termines which individuals are similar to each other. Both determinants of problem difficulty, the
phenotype-fitness mapping f,, and the metric defined on @, are given a priori by the character of
the optimization problem that should be solved.

In subsection 2.3 we described that the mutation operator and the used metric determine each
other. Different mutation operators imply different metrics. As problem difficulty depends not only
on f, but also on the metric defined on ®,, the difficulty of a problem is not absolute but depends
on the used metric respectively search operator. The use of different metrics and search operators
result in different problem difficulty. Consequently, the difficulty of a problem can only be defined
with respect to a search operator. It makes no sense to say a problem is either easy or difficult if
the used search operator is not taken into account.

This aspect of problem difficulty can be illustrated by examining problem difficulty when using
random search. When using random search it can not be distinguished between easy and difficult
problems. The search process chooses new individuals randomly and all possible problem instances
of the same problem and size have the same difficulty. Although measurements of problem difficulty
may lead us to believe that some problem instances are easier than others, there are no easy or
difficult problems when using random search. Independently of the specific structure of a problem,
random search shows the same performance for problems of the same size (if we assume only one
global optimal solution).

Therefore, we should bear in mind that measurements of problem difficulty always measure
the difficulty of a problem regarding to a specific search method. There is no absolute measure of
problem difficulty.

3.1 Measurements of Problem Difficulty

In the following subsection we shortly summarize some common measurements of problem difficulty
and describe for which type of search operators they are most appropriate. Common measurements
of problem difficulty are:

e Correlation analysis,
e polynomial decomposition and Walsh coefficients, and

e schemata analysis.

These measurements of problem difficulty are widely used in the EA literature for measuring
problem difficulty [15, 16, 17, 18, 5]. For an overview see [19]. Their specific properties are briefly
discussed in the following paragraphs.

Correlation analysis is based on the assumption that the high and low-quality solutions are
grouped together and neighboring individuals have similar fitnesses. Problems are easy if the
structure of the search space guides the search to the high-quality solutions. Consequently, cor-
relation analysis is a proper measurement of problem difficulty when using mutation-based search
approaches. The most common measurements for distance correlation are the autocorrelation func-
tion of the fitness landscape [20, 13], the fitness correlation coefficients of genetic operators [13],
and the fitness-distance correlation [21, 5, 22].

The linearity of an optimization problem can be measured by the polynomial decomposition of
the problem [23]. The polynomial coefficients describe the non-linearity of the problem. If there are
high-order coefficients in the decomposition of the problem, the function is highly non-linear. If the
decomposition of a problem has only order 1 coefficients, then the problem is linear and easy for most
EAs. The polynomial decomposition and the Walsh decomposition are equivalent to each other as
it can be shown that Walsh coefficients are also polynomials [24, 23]. For further information about
Walsh analysis we refer the reader to [24, 25]. Similar to the polynomial decomposition, problems
are easy for EAs if the Walsh coefficients are of order one [24, 26, 16, 27].

The analysis of the schemata is a proper way to measure problem difficulty when using crossover
as the main search operator for binary problem domains [28, 29]. It is assumed that schemata
and building blocks are processed and the difficulty of a problem (intra-BB difficulty [30]) can
be measured by the maximum length ¢ and size k of the BBs [29]. A problem is denoted to be
deceptive of order k. if for k < k4. all schemata that contain parts of the best solution have
lower fitness than their competitors [31, 32]. Schemata are competitors if they have the same fixed
positions. Therefore, the highest order kj,q; of the schemata that are not misleading determines
problem difficulty for crossover-based genetic algorithms used for binary problems. The higher the
maximum order k,q; of the schemata, the more difficult a problem is.

3.2 C(Classification of Problem Difficulty

In the following subsection we describe in more detail the classification of problem difficulty we use
for our investigation which is based on the work of [5].

As already discussed, the difficulty of an optimization problem is determined by how the fitness
values are assigned to the phenotypes and what metric is defined on the phenotypes. Combining
both aspects we can measure problem difficulty by the fitness-distance correlation coefficient pppc €
[—1,1] of a problem [21, 5]. pppc measures the correlation between the fitnesses of search points
and their distances to the global optimum. We want to distinguish between three different classes
of problem difficulty:

1. The fitness difference to the optimal solution is positively correlated with the distance to the
optimal solution. With lower distance the fitness difference to the optimal solution decreases.
As the structure of the search space guides local search methods to the optimal solution such
problems are easy for mutation-based search.

2. There is no correlation between the fitness difference and the distance to the optimal solution.
The fitness values of neighboring individuals are uncorrelated and the structure of the search
space provides no information about which solutions should be sampled next by the search
method.

3. The fitness difference is negatively correlated to the distance to the optimal solution. There-
fore, the structure of the search space misleads a local search method to sub-optimal solutions.

0 T T
8 . = g
o o o o O |e
Y— ° Y— ° Y— °
(] L[] — L[]
L[] L[] L[] L[]
L[] L[] L[]
L[] L[] L[] L[]
L[] L[]
L[] L[] L[]
L[] L] L[]
d d d
pos. correlation uncorrelated neg. corelatio

Figure 1: Different classes of problem difficulty

The three different classes of problem difficulty are illustrated in Figure 1. We show how the
fitness difference |f,,+ — f| depends on the distance to the optimal solution d. In the following
paragraphs we want to discuss these three classes in some more detail.

Problems are easy for mutation-based search if there is a positive correlation between an indi-
viduals’ distance to the optimal solution and the difference between its fitness and the fitness of
the optimal solution. Many test problems that are commonly used for EAs like the sphere and
corridor models for evolution strategies or the one-max problem for genetic algorithms show this
behaviour. Such problems are easy for local search methods as the search is guided to the optimal
solution by the structure of the fitness landscape.

Problems become much more difficult if there is no correlation between the fitness difference
and the distance to the optimal solution. Then, the fitness landscape does not guide a mutation-
based search method to the optimal solution. No search heuristics can use information about a
problem which was collected in prior search steps to determine the next search step. Therefore,
all reasonable search algorithms show the same performance as no useful information (information
that indicates where the optimal solution can be found) is available in the problem. Because all
search strategies are equivalent, also random search is an an approriate search method for such
problems. Random search uses no information and performs well on these types of problems.

Problem difficulty is maximal for mutation-based search methods if the fitness landscape leads
the search method away from the optimal solution. Then, the distance to the optimal solution
is negatively correlated to the fitness difference between an individual and the optimal solution.
Because mutation-based search finds the optimal solution by performing iterated small steps in the
direction of better solutions, all mutation-based search approaches must fail as they are mislead. All
other search methods that use information about the fitness landscape also fail. The most effective
search methods for such problems are those that do not use information about the structure of
the search space but search randomly like random search. The most prominent example for such
types of problems are deceptive traps. Such problems are commonly used to perform a worst-case
analysis for EAs.

Although, we use this problem classification for investigating the influence of locality on problem
difficulty, we want to emphazise that in general this problem classification is not relevant for most
of the real-world problem instances. Only problems of class one can be solved efficiently using EAs
or local search as this problem class guides the local search methods (like mutation-based EAs) to
the good solutions. In contrast, for problems of class two, mutation-based search methods perform
as well as random search, and for problems of class three random search performs even better. This
situation is not in constrast to the observed good performance of EAs on many real-world problem
instances. EAs show a good performance as most of the real-world problems are easy problems and
belong to class one. In general, for real-world problems the fitness values of neighboring solutions

performance

mutation— based search

random search

problem

pos. correlation no correlation neg. correlation difficulty
(class 1) (class 2) (class 3)

Figure 2: Performance of mutation-based EA search versus random search

are correlated, and high-quality and low-quality solutions are grouped together. Fitness landscapes
that are uncorrelated, or even deceptive, are uncommon in real world.

This situation is illustrated in Figure 2. We know from the no-free-lunch theorem that all
search methods show on average the same performance over all possible problem instances [33,
34]. Furthermore, we know that the performance of random search remains constant over all
problem instances and that mutation-based evolutionary search performs well on problems of class
one. Consequently, it must show low performance on other problem instances (class 3). As the
performance of mutation-based search is “biased” towards problems of class one, many real-world
instances can efficiently solved using mutation-based EAs.

4 Genotype-Phenotype Mappings

We have seen in section 2.1 that representations can change the character and difficulty of opti-
mization problems. If f(xg) # fp(xp), the genotypic and phenotypic problem difficulty is different.
In the following subsections we discuss high versus low-locality representations and illustrate how
the locality of a representation influences problem difficulty.

4.1 Low versus High-Locality Representations

We have seen in subsection 2.2 that the metric defined on ®, can be different from the metric de-
fined on ®,. The locality of a representation describes how well the phenotypic metric corresponds
to the genotypic metric. It is possible to distinguish between high and low-locality representations.
Representations have high locality if neighboring genotypes correspond to neighboring phenotypes.
In constrast, representations have low locality if neighboring genotypes do not correspond to neigh-
boring phenotypes. Figure 3 illustrates the difference between high and low-locality representations.
In this example we assume that there are 12 different phenotypes (a-1) and that there is a metric
defined on @, (in this example the Euclidean distance). Each phenotype (lower case symbol) cor-
responds to one genotype (upper case symbol). The representation f, has perfect (high) locality
if the distances between the phenotypes are the same as the distances between the corresponding
genotypes. Then a mutation step has the same effect in the phenotypic and genotypic search space.

As we assume in our considerations that f, is a one-to-one mapping every phenotype is rep-
resented by exactly one genotype and there are |®,|! = |®,|! different representations. |®,| is the
size of the genotypic search space. Each of these many different representations assignes the geno-
types to the phenotypes in a different way. A common example are different representations for
representing integer phenotypes using binary strings. Both, binary and Gray encoding, represent

integers using binary strings of the same length but they differ in which phenotype is represented
by which genotype.

Investigating the relationship between different representations
(how the genotypes are assigned to the phenotypes) and the used
mutation operator (which is based on the genotypic metric) re-
veals that a different assignment of genotypes to phenotypes can
be equivalent to the use of a different metric for ®,. This ef-
fect is known as the isomorphism of fitness landscapes [35]. For
example, it can be shown that the use of a simple bit-flipping
operator (which induces the Hamming metric) for Gray encoded
problems is equivalent to the use of the complementary crossover
high locality lowlocality operator (which induces a different “non-Hamming” metric) for
binary encoded problems [36]. Both metric-representation combi-
nations result in the same fitness landscape and therefore in the
same performance of mutation-based search.

phenotypic
search space

genotypic
search space

Figure 3: High versus low-
locality representations

4.2 Influence on Problem Difficulty

Finally, we want to discuss in the following paragraphs how the low versus high locality of a repre-
sentation influences the performance of mutation-based search approaches. A representation trans-
forms the phenotypic problem f, with some given phenotypic problem difficulty into a genotypic
problem f = f, o f, with a resulting problem difficulty that can be different from the phenotypic
problem difficulty. We use the problem classification described in subsection 3.2.

We have seen that the phenotypic difficulty of an optimization problem depends on the metric
that is defined on the phenotypes and the function f, which assigns a fitness value to every pheno-
type. Based on the phenotypic metric a local search operator can be defined (for the phenotypes).
By the use of a representation which assigns a genotype to every phenotype a new genotypic metric
is introduced which can differ from the phenotypic metric. Therefore, also the character of the
search operator can be different for genotypes and phenotypes. If the locality of a representation
is high, then the mutation operator has the same effect on the phenotypes as on the genotypes. As
a result, genotypic and phenotypic problem difficulty is the same and the difficulty of a problem
remains unchanged by the use of an additional representation f,. Phenotypic easy problems remain
genotypically easy and phenotypic difficult problems remain genotypically difficult. Figure 4 (left)
illustrates the effect of mutation for high-locality representations. The search operator (mutation)
has the same effect on the phenotypes as on the genotypes.

The situation is different when focusing on low-locality representations. Then the influence of
the representation on the difficulty of a problem depends on the considered optimization problem.
If the considered problem f, is easy (class 1) and the structure of the search space guides the
mutation-based search method to the optimal solution, a low-locality representation f, randomizes
the problem and makes the overall problem f more difficult. When using low-locality representa-
tions a small change of a genotype does not correspond to a small change of the phenotype but
larger changes of the phenotype are possible (compare Figure 4 (right)). Therefore, when using
low-locality representations, phenotypic easy problems of class one turn on average into genotypic
problems of class two. Low-locality representations lead to a more uncorrelated fitness landscape
and heuristics can no longer extract information about the structure of the problem. Guided search
becomes more difficult as many genotypic search steps do not result in a similar individuum but in
a random one.

If the problem f), is of class two, on average a low-locality representation does not change the

problem class. Although, the mutation-based search becomes more random search, the performance
stays contant as random search and mutation-based search show the same performance for problems
of class two. Of course, there are representations that can make a problem easier and result in
an overall genotypic problem f of class one; however, there are only few of them and most of
the low-locality representations just modify the problem and do not create a fitness landscape of
class one that leads the search method to the good solutions. On the other hand, there are also
representations f; that construct a problem f that misleads mutation-based search and transforms
a problem of class two into class three. But as for low-locality representations that transform a
problem from class two into class one there are only few of such representations.

high locality low locality Finally, we have to consider problems of class three. On av-
a b c d a k c d] erage, the use of low-locality representations transform such prob-
h i /@fh\ b| lems into problems of class two as the problems become more ran-
| e ﬁ g 1] domized. Therefore, mutation-based search is less misled by the
fitness landscape and the problem difficulty for mutation-based
search is reduced. On average, low-locality representations “de-
stroy” the deceptiveness of class three problems and turn them
into problems of class two.

A good example for a low locality representation are Priifer
numbers [37]. This representation represents a tree by a sequence
of integers and has low locality. Much work has investigated the
influence of Priifer numbers on EA (for a survey see [38, section
6.2]) and it has been noted that most real-world problems become
more difficult to solve for mutation-based EAs when using Priifer
numbers. This situation can be explained as most real-world tree problems belong to class one.
Therefore, the low locality of the Priifer number representation randomizes these problems and
makes them more like class two problems which are much more difficult to solve for mutation-based
EAs. [38, section 8.1.] investigated the performance of EAs using Priifer numbers for deceptive
problems (class three). The results show that such difficult problems become easier to solve and
EAs using Priifer numbers show good performance in comparison to other representations. In this
case, difficult problems of class three are transformed into easier but still difficult problems of class
two.

Summarizing the results we recognize that low-locality representations have the same effect
as using random search. Therefore on average, problems of class one become more difficult and
problems of class three more easy to solve. As most real-world problems belong to class one, the
use of low-locality representations makes these problems more difficult. Therefore, we strongly
encourage researchers to use high-locality representations for problems of practical relevance. Of
course, low-locality representations make deceptive problems easier; however these are problems
which we do not expect to meet in reality and which are only of theoretical interest.

e

phenotypic
search space

~ «Q

genotypic
search space

Figure 4: The effect of mu-
tation for high versus low-
locality representations

5 Conclusions

This paper investigated how the locality of a represenation influences the performance of mutation-
based search. The locality of a representation describes how well the metric defined on the genotypic
search space corresponds to the metric defined on the phenotypic search space. For our investigation
we could use many existing results and insights about representations and problem difficulty; it
was not neccessary to develop much new theory but just to put the pieces into the correct order.
The results show that representations can change the difficulty of problems. Only when using

high-locality representations problem difficulty does not change. Easy problems remain easy and
difficult problems remain difficult for mutation-based search. In contrast, low-locality representa-
tions randomize the search process and reduce the correlation between the fitness of a solution and
its distance to the optimal solution. Therefore, problem difficulty changes and easy problems which
guide mutation-based search to good solutions become more difficult and difficult problems that
mislead mutation become more easy.

We strongly encourage users to use high-locality representations for real-world problems. Such
representations ensure that easy problems remain easy for mutation-based search. Although, low-
locality representations make deceptive problems easier, low-locality representations are not a good
choice as deceptive problems are not common in the real-world.

References

[1] J. Gottlieb and G. Raidl. Characterizing locality in decoder-based eas for the multidimensional knapsack
problem. In C. Fonlupt, J.-K. Hao, E. Lutton, E. Ronald, and M. Schoenauer, editors, Proceedings of
Artificial Evolution, volume 1829 of Lecture Notes in Computer Science, pages 38-52. Springer, 1999.

[2] Jens Gottlieb and Giinther R. Raidl. The effects of locality on the dynamics of decoder-based evolu-
tionary search. In D. Whitley, D. E. Goldberg, E. Canti-Paz, L. Spector, L. Parmee, and H.-G. Beyer,
editors, Proceedings of the Genetic and Fvolutionary Computation Conference 2000, pages 283-290, San
Francisco, CA, 2000. Morgan Kaufmann Publishers.

[3] Jens Gottlieb, Bryant A. Julstrom, Giinther R. Raidl, and Franz Rothlauf. Priifer numbers: A poor
representation of spanning trees for evolutionary search. IIIiIGAL Report No. 2001001, University of
Illinois at Urbana-Champaign, Urbana, 2001.

[4] F. Rothlauf and D. E. Goldberg. Priifernumbers and genetic algorithms: A lesson on how the low
locality of an encoding can harm the performance of GAs. In Schoenauer et al. [40], pages 395-404.

[5] T. Jones and S. Forrest. Fitness distance correlation as a measure of problem difficulty for genetic
algorithms. In L. Eschelman, editor, Proceedings of the Sizth International Conference on Genetic
Algorithms, pages 184-192, San Francisco, CA, 1995. Morgan Kaufmann.

[6] G. E. Liepins and M. D. Vose. Representational issues in genetic optimization. Journal of Experimental
and Theoretical Artificial Intelligence, 2:101-115, 1990.

[7] R. C. Lewontin. The Genetic Basis of Evolutionary Change. Number 25 in Columbia biological series.
Columbia University Press, New York, 1974.

[8] J. D. Bagley. The Behavior of Adaptive Systems Which Employ Genetic and Correlation Algorithms.
PhD thesis, University of Michigan, 1967. (University Microfilms No. 68-7556).

[9] M. D. Vose. Modeling simple genetic algorithms. In Whitley [39], pages 63—-73.
[10] R. Hamming. Coding and Information Theory. Prentice-Hall, 1980.

[11] R. A. Caruana and J. D. Schaffer. Representation and hidden bias: Gray vs. binary coding for genetic
algorithms. In L. Laird, editor, Proceedings of the Fifth International Workshop on Machine Learning,
pages 153-161, San Mateo, CA, 1988. Morgan Kaufmann.

[12] J. Doran and D. Michie. Experiments with the graph traverser program. Proceedings of the Royal
Society of London (A), 294:235-259, 1966.

[13] B. Manderick, M. de Weger, and P. Spiessens. The genetic algorithm and the structure of the fitness
landscape. In R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth International Conference
on Genetic Algorithms, pages 143-150, San Mateo, CA, 1991. Morgan Kaufmann.

[14] D. Whitley. Evaluating evolutionary algorithms. Tutorial Program at Parallel Problem Solving from
Nature (PPSN 2002, September 2002.

10

[15]
[16]

[17]
[18]

D. E. Goldberg. Genetic algorithms and Walsh functions: Part II, deception and its analysis. Complex
Systems, 3:153-171, 1989.

D. E. Goldberg. Construction of high-order deceptive functions using low-order Walsh coefficients.
Annals of Mathematics and Artificial Intelligence, 5:35—48, 1992.

N. J. Radcliffe. Genetic set recombination. In Whitley [39], pages 203-219.

J. Horn. Genetic algorithms, problem difficulty, and the modality of fitness landscapes. IlliGAL Report
No. 95004, University of Illinois at Urbana-Champaign, Urbana, IL, 1995.

K. Deb, L. Altenberg, B. Manderick, T. Back, Z. Michalewicz, M. Mitchell, and S. Forrest. Theoretical
foundations and properties of evolutionary computations: fitness landscapes. In T. Béck, D. B. Fogel,
and Z. Michalewicz, editors, Handbook of Evolutionary Computation, pages B2.7:1-B2.7:25. Institute of
Physics Publishing and Oxford University Press, Bristol and New York, 1997.

E. Weinberger. Correlated and uncorrelated fitness landscapes and how to tell the difference. Biological
Cybernetics, 63:325-336, 1990.

T. Jones. Evolutionary algorithms and heuristic search. Unpublished doctoral dissertation, University
of New Mexico, Alberquerque, NM, 1995.

L. Altenberg. Fitness distance correlation analysis: An instructive counterexample. In T. Béack, editor,
Proceedings of the Seventh International Conference on Genetic Algorithms, pages 57—-64, San Francisco,
1997. Morgan Kaufmann.

G. E. Liepins and M. D. Vose. Polynomials, basis sets, and deceptiveness in genetic algorithms. Complex
Systems, 5(1):45-61, 1991.

D. E. Goldberg. Genetic algorithms and Walsh functions: Part I, a gentle introduction. Complex
Systems, 3(2):129-152, 1989.

M. D. Vose and A. H. Wright. The simple genetic algorithm and the Walsh transform: Part I, theory.
Evolutionary Computation, 6(3):253-273, 1998.

C. K. Oei. Walsh function analysis of genetic algorithms of non-binary strings. Master’s thesis, University
of Illinois at Urbana-Champaign, Department of Computer Science, Urbana, 1992.

C. Reeves and C. Wright. An experimental design perspective on genetic algorithms. In L. D. Whitley
and M. D. Vose, editors, Foundations of Genetic Algorithms 3, pages 7-22, San Francisco, California,
1994. Morgan Kaufmann Publishers, Inc.

J. H. Holland. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor,
MI, 1975.

D. E. Goldberg. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley,
Reading, MA, 1989.

David E. Goldberg. The Design of Innovation. Series on Genetic Algorithms and Evolutionary Com-
putation. Kluwer, Dordrecht, The Netherlands, 2002.

D. E. Goldberg. Simple genetic algorithms and the minimal, deceptive problem. In Genetic Algorithms
and Simulated Annealing, chapter 6, pages 74—88. Morgan Kaufmann, San Mateo, CA, 1987.

K. Deb and D. E. Goldberg. Sufficient conditions for deceptive and easy binary functions. Annals of
Mathematics and Artificial Intelligence, 10:385-408, 1994.

D. H. Wolpert and W. G. Macready. No free lunch theorems for search. Tech. Rep. No. SFI-TR-95-02-
010, Santa Fe Institute, Santa Fe, NM, 1995.

D. Whitley. Functions as permutations: Implications for no free lunch, walsh analysis and statistics. In
Schoenauer et al. [40], pages 169-178.

C. R. Reeves. Landscapes, operators and heuristic search. Annals of Operational Research, 86:473-490,
1999.

11

[36] C. Reeves. Fitness landscapes: A guided tour. Joint tutorials of SAB 2000 and PPSN 2000, tutorial
handbood, 2000.

[37] H. Priifer. Neuer Beweis eines Satzes iiber Permutationen. Archiv fiir Mathematik und Physik, 27:742—
744, 1918.

[38] Franz Rothlauf. Representations for Genetic and Evolutionary Algorithms. Studies on Soft Computing
and Fuzziness. Springer Verlag, Berlin, 2002.

[39] L. D. Whitley, editor. Foundations of Genetic Algorithms 2, San Mateo, CA, 1993. Morgan Kaufmann.

[40] M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel, editors.
Parallel Problem Solving from Nature, PPSN VI Berlin, 2000. Springer-Verlag.

12

