
On the Avoidance of Fruitless Wraps in
Grammatical Evolution

Conor Ryan1, Maarten Keijzer2, and Miguel Nicolau1

1 Department Of Computer Science And Information Systems
University of Limerick, Ireland

{Conor.Ryan,Miguel.Nicolau}@ul.ie
2 CS Dept., Free University, Amsterdam

mkeijzer@cs.vu.nl

Abstract. Grammatical Evolution (GE) is an evolutionary system that
employs variable length linear chromosomes to represent computer pro-
grams. GE uses the individuals to produce derivation trees that adhere
to a Backus Naur Form grammar, which are then mapped onto a pro-
gram. One unusual characteristic of the system is the manner in which
chromosomes can be “wrapped”, that is, if an individual has used up all
of its genes before a program is completely mapped, the chromosome is
reread. While this doesn’t guarantee that an individual will map, prior
work suggested that wrapping is beneficial for the system, both in terms
of increased success rates and a reduced number of invalid individuals.
However, there has been no research into the number of times an indi-
vidual should be wrapped before the system gives up, and an arbitrary
upper limit is usually chosen.
This paper discusses the different types of grammars that could be used
with this system, and indicates the circumstances under which individu-
als will fail. It then presents a heuristic to minimize the number of wraps
that have to be made before the system can determine that an individ-
ual will fail. It is shown that this can drastically reduce the amount of
wrapping on a pathologically difficult problem, as well as on two classes
of grammar often used by the system.

1 Introduction

Grammatical Evolution(GE) [10][6] is an Evolutionary Automatic Programming
system that uses a variable length Genetic Algorithm to evolve programs in any
language. The key to the system is the manner in which a Backus Naur Form
(BNF) grammar is employed to specify the target language, and is used to map
the linear genomes into syntactically correct programs.

One unusual characteristic of GE is the manner in which an individual’s
genome is reused, using a technique known as wrapping. That is, if, when the
end of the genome is reached, an individual hasn’t fully mapped to a program,
another pass is made through the genome. The intrinsically polymorphic [3], that
is, the manner in which the meaning of a codon is dependant on the context in
which it is used, nature of the codons on the genome means that it is possible

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 1752–1763, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.3     Für schnelle Web-Anzeige optimieren: Nein     Piktogramme einbetten: Nein     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 2400 2400 ] dpi     Papierformat: [ 594.962 841.96 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 2400 dpi     Downsampling für Bilder über: 3600 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Farbe nicht ändern     Methode: StandardGeräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Ja     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: Ja     DSC-Warnungen protokollieren: Nein     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja     EPS-Info von DSC beibehalten: Ja     OPI-Kommentare beibehalten: Nein     Dokumentinfo von DSC beibehalten: JaANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments true     /DoThumbnails false     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize false     /ParseDSCCommentsForDocInfo true     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.3     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends true     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo true     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /LeaveColorUnchanged     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 300     /EndPage -1     /AutoPositionEPSFiles true     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 2400     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 300     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 2400 2400 ]>> setpagedevice



On the Avoidance of Fruitless Wraps in Grammatical Evolution 1753

that, on the second and subsequent passes, a different interpretation will be
produced. This can lead to a complete mapping for an individual that would
otherwise have failed.

Although previous work [5] illustrated that wrapping often helps evolution
and, at worst, does not harm it, no research has been conducted into the how
many times an individual should wrap. An upper limit is chosen, but there is
no way to tell in advance how this number should be set. If it is too low, then
potentially useful individuals will wrongly be dubbed as invalid, while if it is too
high, the system will waste time wrapping individuals that will never map.

This paper takes a formal look at the process of wrapping, and devises a
heuristic to determine as early as possible when the wrapping of an individual
should stop. We show that this heuristic reduces the effort required by GE
without effecting the performance, because only those individuals that would
fail to wrap are removed from the population.

The paper is laid out as follows. The next section introduces Grammatical
Evolution and Backus Naur Form, while Sect. 3 discusses some of the properties
of the simplest type of context free grammar(CFG). Section 4 expands this to
include CFGs with two non-terminals, and Sect. 5 expands the work further
again to the general case. Some experiments are conducted in Sect. 6, before the
paper concludes with a brief summary in Sect. 7.

2 Grammatical Evolution

Grammatical Evolution is a genotype-phenotype mapping system that can map
variable length binary strings into sentences of an arbitrary language. To use
the system, one specifies the target language using a Backus Naur Form (BNF)
grammar. BNF is a convenient representation for describing grammars. A gram-
mar is represented by a tuple {N, T, P, S}, where T is a set of terminal symbols,
i.e., items that can appear in legal sentences of the grammar, and N is a set
of non-terminal symbols, which are interim items used in the generation of ter-
minals. P is a set of production rules that map the non-terminal symbols to a
sequence of terminal (or non-terminal) symbols, and S is a start symbol, from
which all legal sentences must be generated.

Below is a sample grammar, similar to that used by Koza [2] in his symbolic
regression and integration problems. Although Koza did not use grammars, the
terminals in this grammar are similar to his function and terminal sets.

S = <expr>
<expr> ::= <expr> <op> <expr>

| ( <expr> <op> <expr>)
| <pre-op> ( <expr> )
| <var>

<op> ::= + | - | / | *
<pre-op> ::= Sin | Cos | Exp | Log
<var> ::= 1.0



1754 C. Ryan, M, Keijzer, and M. Nicolau

2.1 The Mapping Process

Rather than encoding actual programs, GE encodes choices. At many stages
during the derivation of a legal sentence, one is required to make a choice. For
example, in the previous grammar, there are four possible choices when map-
ping the <expr> non-terminal. To decode the choices, one first looks upon the
genome as being divided into 8-bit codons, each of which codes for a single
choice. Consider the individual below, written in decimal for brevity.

220 203 51 123 2 45

Initially, the goal-stack, that is, the stack of non-terminals, contains <expr>,
as this is the start symbol. The first codon is read and moded by the number
of choices giving, in this case, 0, so the first choice is made, causing the top of
the stack to be replaced by the newly produced non-terminals. The individual
continues to be read, codon by codon, until either the individual has mapped,
or the all the codons have been exhausted.

In the latter case, the individual is wrapped. That is, the genome is read
again. Clearly, if the first non-terminal to be mapped is the same as the start
symbol, the individual will keep growing, and will never terminate. However, if
the non-terminal is different, then this time around, the first codon will be used
differently. This change will then ripple down through the rest of the codons, as
the meaning of each codon is dependent on the context in which it is used. This
property is referred to as intrinsic polymorphism. Even with wrapping, however,
there is no guarantee that an individual will map to completion, so an upper
limit is placed on the number of wraps permitted. Once this number has been
reached, an individual is terminated.

Although the choice of this limit is clearly very important, given that if it is
too low, individuals may be terminated before they get a chance to map, while an

<expr>

<expr><op><expr>

<var><op><expr>

X   <op><expr>

X    *    <var>

X    *    <expr>

X    *    X

(<expr>    4 choices)

(<var>     No choices)

(<expr>    4 choices)

(<var>     2 choices)

(<op>     4 choices)

(<expr>    4 choices)

220  203  51  123   2  45

Fig. 1. Example mapping outline



On the Avoidance of Fruitless Wraps in Grammatical Evolution 1755

excessively high limit leads to excessive wraps and memory usage (as individuals
doomed to failure from excessive wraps tend to keep growing), no investigation
has been carried out into determining a suitable number. An upper limit of ten
was suggested in [4], although in a related system [9] a different approach is used,
in which wrapping is only permitted in the first generation. These individuals are
then “unrolled” so that they map in a single pass, and no wrapping is permitted
in subsequent generations. In all cases, individuals that fail to map are given
zero fitness, and are not permitted to engage in any reproductive activity.

Investigations into wrapping [5] suggested that, in the worst case, it doesn’t
adversely affect the performance of the system, while in the best case, it improves
the performance.

These results suggest that, in general, most of the wrapping occurs early on
in a run, and that most individuals (regardless of whether they wrap or not)
map to completion after the first few generations. That said, there is clearly
a lot of wasted evaluation expended on fruitless wraps. If there was some way
to identify individuals that will never map without performing a large number
of wraps, then the system could expect to enjoy a speed up, without any cost
in performance, as none of these individuals contribute their genetic material
through crossover.

3 Single Non-terminal Grammars

The simplest type of grammars are single non-terminal grammars. These gram-
mars adhere to the “closure” principle of GP, that is, all functions (non-terminals
for GE) can take all other functions and terminals as arguments. This can be
illustrated with the following grammar, the productions of which are labelled for
later reference :

E ::= (+ E E) | (* E E) | (- E E) | (% E E) | x | 1
0 1 2 3 4 5

This grammar produces the same individuals as a GP set up with a function set
of { +, *, -, %} (each of which has an arity of 2) and a terminal set of {x, 1}. In
this case there is just one non-terminal, which ensures that any production can
be applied at any time.

Furthermore, as there is only one non-terminal, codons effectively have abso-
lute values, as they will never be re-interpreted. Thus, an individual that doesn’t
successfully map on the first pass will never map.

Single non-terminal grammars are, however, still useful in this context, as
their simplicity helps us provide some definitions. We define producers to be those
rules which increase the stack size, by adding one more more non-terminals to the
stack, e.g. rules 0-3 above. Similarly, consumers are those rules which reduce the
stack size, e.g. rules 4 and 5 above. Further, those rules which, after application,
leave the size of the stack unchanged are referred to as neutrals.

We assign each production rule a PCN (Producer/Consumer/Neutral) num-
ber. That is, the effect it has on the stack size. From the grammar above, the



1756 C. Ryan, M, Keijzer, and M. Nicolau

Stack
size

0 1 4 2 4 5 4 2 3

1

2

3

S

Fig. 2. Example shape graph

first four rules each have a PCN# of 1, while the remaining two have a PCN# of
-1. Consider the (decoded) individual 0 1 4 2 4 5 4 2 3. If we align the codons
as follows, we can determine how the stack will grow and contract:

Codon 0 1 4 2 4 5 4 2 3
PCN# 1 1 -1 1 -1 -1 -1 1 1

The stack size always starts at 1, to reflect the presence of the start symbol. As
each codon is successively applied, its PCN# is added to the size. If the size
reaches zero, the individual has completely mapped.

A useful visualisation method is that of shape graphs [1]. These can be used
to indicate the manner in which a stack grows and contracts over time. Figure 2
gives an example of the individual above.

The mapping stops when the size goes to zero, so the unexpressed codons
are represented by the dashed line. Because this is a single non-terminal gram-
mar, each codon has an absolute value, so the meaning is not influenced by its
predecessors. Thus, we can examine the PCN numbers to determine whether or
not an individual will map. That is, the PCN number for string s is

pcn(s) =
N∑

i

pcn(si)

If this number is less than zero, the mapping process will necessarily terminate.
Furthermore, a string will terminate if and only if there is a k such that

k∑

i

pcn(si) = −1

and, if a string doesn’t terminate the first time around, it never will, as wrapping
is essentially a double sum over PCN.

In particular, we can assert that, if the total PCN of consumers is greater
than that of producers in an individual, then that individual will map.

Early work [4] indicated that the number of invalid individuals in GE dropped
off from an average of 20% in the initial generation to almost zero by the fourth
generation. We postulate that this is due to the evolution of a stop sequence of
codons which, almost always, regardless of what productions were performed at
the start of the mapping process, will complete an individual. Notice, however,



On the Avoidance of Fruitless Wraps in Grammatical Evolution 1757

Stack
size

0 1 4 2 4 5 4 2 3

1

2

3

S

Stack
size

41 4 55 0 2 4 55

1

2

3

S

Fig. 3. Example shape graph of two GE individuals, with the second individual con-
taining a particularly strong stop sequence

that one cannot expect a stop sequence to guarantee to complete all individuals,
as individuals that grow without bounds initially may not map.

This is illustrated by the shape graphs in Fig. 3, in which the second parent
has a tail of unexpressed codons, most of which are consumers. We describe any
sequence of codons that, on average, consumes non-terminals as a stop sequence.
Clearly, not all stop sequences are equal, with some being stronger than others
as they consume more, and so have a steeper slope when plotted on a shape
graph. Any individual crossed over with the second parent will be more likely to
terminate due to the relatively strong stop sequence in the unexpressed tail of
that individual.

4 Dual Non-terminal Grammars

The simplest case in which an individual may usefully be mapped is that in
which there are two non-terminals. Consider the simple grammar:

A -> aAA | B
B -> a | b

where A is the start symbol. Typically, GE will wrap an individual if the stack
is non-empty after the first pass. However, if the non-terminal A is on top of
the stack, there is no point, as the system has just established that, for this
individual, applying it to non-terminal A will (a) cause the stack to grow; and
(b) leave another A on top of the stack. Clearly, this individual will keep growing.

If, on the other hand, we change context to the other non-terminal, we must
go through the individual again. There are three possible results, (a) the indi-
vidual completes; (b) an A is left on top; and (c) a B is left on top.



1758 C. Ryan, M, Keijzer, and M. Nicolau

If an A is on top, then there is clearly no point in continuing, as the stack will
continue growing. On the other hand, if there is a B, our next course of action
depends on what happened to the stack. If it increased, or remained the same,
then we should stop, while if it decreased, then we should continue wrapping.

Consider the individual 0 0 1, which is expressed using such low numbers to
avoid having to perform the mod rule. After the first pass, the individual will
have mapped to:

aaBAA

In this case, there is a different non-terminal at the top of the stack, so we
wrap the individual to produce :

aaaaBAA

Although the individual has increased in size due to the introduction of the
terminals, the stack has remained the same. Thus, we can assume that this
individual will never map.

5 General Case

Most grammars have more than two non-terminals. Unfortunately, in these cases,
one cannot be guaranteed that the behaviour of an individual will remain con-
stant even in the same context. Consider the grammar :

A -> A | BC
B -> b | b
C -> BBB | BBB

where upper case letters denote non-terminals, and lower case letters terminals.
If we try to map the individual 01, the following results:

Pass # Individual
1 BC
2 bBBB
3 bbbB
4 bbbb

The result of pass #2 suggests that, with B on top of the stack, this particular
individual will cause the stack to continue to increase in size. However, this is
not the case, because, on the following pass, the stack decreases, and mapping
is complete on the next pass.

This means that a simple watch on the size of the stack isn’t enough to
guarantee that an individual is going to fail. In general, an individual that will
fail to map will enter into a cyclical behaviour. That is, the individual will



On the Avoidance of Fruitless Wraps in Grammatical Evolution 1759

keep being applied to the same non-terminal, or set of non-terminals. That is,
although the individual may keep changing contexts, there is still a cycle. The
difficulty, of course, is spotting these cycles.

Consider the individual above. The non-terminals on top of the stack at
the start of each pass (including the first) are A,B,B and B. One could claim
that the Bs form a repetitive pattern, but there are enough changes occurring
in the stack to prevent it from becoming a pathological pattern. Clearly, only
examining the top of the stack doesn’t present enough information. We suggest
the following heuristic : if the entire stack from the last pass is at the top
of the stack from this pass, then stop.

This will indicate that the system is stuck in a cycle because, when the same
stack from the last time around is on top, the exact same derivation sequence
will be repeated. Notice that, while this heuristic isn’t guaranteed to stop all
wraps, it is guaranteed not to terminate an individual too early.

6 Experiments

To test how well the heuristic performed, an artificial problem was created that
actively promotes individuals that wrap. This is achieved by making the fitness
function the number of wraps an individual requires to map to completion. An
individual that fails to wrap is given a score of zero.

The grammar used in this problem is designed to make it difficult to iden-
tify individuals that will fail. In particular, the mutually recursive relationship
between the two non-terminals, coupled with the fact that both have produc-
tions that produce no non-terminals means that the stack can grow and contract
several times throughout a derivation.

The actual grammar used is :

A -> BB | a
B -> BB | AA | c

Notice that, while this grammar is not designed to solve any particular prob-
lem, simply to promote wrapping, this turned out to be a nontrivial task, and
individuals that reached the maximum fitness were extremely complicated.

A population size of 500 was run for 100 generations, with steady state tour-
nament selection, and a tournament size of three. All results are averaged over
50 independent runs. The maximum fitness was 99, and the maximum number
of wraps allowed was set to 100. Figure 4 shows the average fitness over time,
and compares the number of illegal individuals identified by the heuristic to
the number that exceeded the maximum number of wraps. In no case did an
individual deemed a failure by the heuristic go on to map successfully.

Clearly, the heuristic fails to catch all the individuals that fail to map. How-
ever, it does identify an average of 35% of them after just two wraps. This
represents a saving of 765,576 wraps for this problem. Given that this gram-
mar was specifically designed to encourage wrapping, this is quite a considerable
saving.



1760 C. Ryan, M, Keijzer, and M. Nicolau

0

5

10

15

20

25

0 20 40 60 80 100

A
ve

ra
ge

 b
es

t f
itn

es
s

Generation

Wrapping problem

0

50

100

150

200

250

300

0 20 40 60 80 100

N
um

be
r 

of
 in

di
vi

du
al

s

Generation

Wrapping problem

Illegal individuals
Heuristic

Fig. 4. Average fitness for the artificial wrapping problem (left) and a comparison of
the number of individuals flagged by the heuristic, and those that timed out(right)

6.1 Application Grammars

The actual grammars employed by GE do not, in general, have such inherently
pathological properties that facilitate wrapping. This section looks at two com-
monly used grammars, one suited for Symbolic Regression type problems, as
shown in Sect. 2, and one for the Santa Fe Ant Trail, as described below.

<code> :: = <line> |<code><line>
<line> :: = <if-statement>|<op>
<if-statement> :: = if(food_ahead()) {<line>} else {<line>}
<op> :: = left(); | right(); | move();

We are now more interested in the behaviour of the heuristic on a class of
grammars, rather than on particular problems. To this end, we again use the
number of wraps as a fitness function, to create a worst case scenario which may
give us a lower bound on how well one can expect the heuristic to perform.

These problems use the same parameters normally associated with GE. That
is, a population of 500 evolving for 50 generations, with steady state selection
and a mutation probability of 0.01.

Figure 5 shows the performance of each of the grammars using the number
of successful wraps as a measure of success. The Santa Fe results immediately
leap out, showing that no individual in any of the runs attained a fitness greater



On the Avoidance of Fruitless Wraps in Grammatical Evolution 1761

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 b
es

t f
itn

es
s

Generation

Symbolic Regression

0

1

2

3

4

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 b
es

t f
itn

es
s

Generation

Santa Fe Ant Trail

Fig. 5. Performance using number of successful wraps as a measure for Symbolic Re-
gression (left) and Santa Fe Ant (right)

than two. It is an inherent property of the grammar that it will either complete
after two wraps or not at all, but the heuristic is still capable of identifying
individuals, and does so after an average of 1.3 wraps.

On the other hand, the Symbolic Regression grammar climbs continuously
right up until the final generation, clearly indicating that legal individuals in
this case are capable of considerably more wraps.

The numbers of individuals identified by the heuristic as being illegal in each
case are shown in Fig. 6. In the case of the Symbolic Regression grammar, the
heuristic performs very well at the start, but, after about 15 generations, starts
to fail to identify failures. Across the 50 generations, the heuristic, on average,
identifies 33% of invalid individuals, with an average of 2.06 wraps.

In the case of the Santa Fe grammar, the heuristic performs much better,
correctly identifying around 84% of failures, with an average of just 1.3 wraps.

The fact that these problems specifically encourage wrapping should be kept
in mind, so, particularly with the symbolic regression grammar, in which the
fitness keeps rising, it shouldn’t be surprising that the number of invalid indi-
viduals keeps increasing. This was done specifically to create a difficult situation
for the heuristic, but in usual GE runs, the number of invalid individuals drops
to near zero by the fourth or fifth generation.



1762 C. Ryan, M, Keijzer, and M. Nicolau

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r 

of
 in

di
vi

du
al

s

Generation

Symbolic Regression

Illegal individuals
Heuristic

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r 

of
 in

di
vi

du
al

s

Generation

Santa Fe Ant Trail

Illegal individuals
Heuristic

Fig. 6. The number of individuals identified by the heuristic for the Symbolic Regres-
sion grammar (left) and the Santa Fe grammar (right)

7 Conclusions

This paper has investigated the phenomenon of wrapping in Grammatical Evo-
lution. We have demonstrated circumstances under which individuals will fail
to map using a number of different types of context free grammars, namely,
single non-terminal grammars, dual non-terminal grammars and multiple non-
terminal grammars. Using shape graphs, we describe a stop sequence, which is
any sequence of genes that is likely to terminate another string after crossover.

We showed a simple algorithm to determine whether or not an individual
using a dual non-terminal grammar will fail to map, and illustrated the diffi-
culty in extending this algorithm to multiple non-terminal grammars. However,
a very cheap heuristic has been shown that, on a problem specifically designed
to produce individuals that will fail, successfully identifies 35% of individuals
that won’t map.

The paper also considered two classes of grammars, a symbolic regression
type, and a Santa Fe Ant Trail type. For both of these, the worst case was
examined, that is, where individuals are actually rewarded for wrapping. In
these cases, the heuristic successfully identified 33% and 84% of failures for
the symbolic regression grammar and the Santa Fe Ant Trail grammar respec-
tively.



On the Avoidance of Fruitless Wraps in Grammatical Evolution 1763

References

1. Keijzer M. Scientific Discovery using Genetic Programming PhD Thesis, Danish
Hydraulic Institute, 2001.

2. Koza, J.R., Genetic Programming: On the Programming of Computers by Means
of Natural Evolution, MIT Press, Cambridge, MA, 1992.

3. Keijzer M., Ryan C., O’Neill M., Cattolico M., and Babovic V. Ripple crossover
in genetic programming. In Proceedings of EuroGP 2001, 2001.

4. M. O’Neill. Automatic Programming in an Arbitrary Language: Evolving Pro-
grams with Grammatical Evolution. PhD thesis, University Of Limerick, 2001.

5. O’Neill M. and Ryan C. Genetic code degeneracy: Implications for grammatical
evolution and beyond. In ECAL’99: Proc. of the Fifth European Conference on
Artificial Life, Lausanne, Switzerland, 1999.

6. O’Neill M. and Ryan C. Grammatical Evolution. IEEE Transactions on Evolu-
tionary Computation. 2001.

7. O’Sullivan, J., and Ryan, C., An Investigation into the Use of Different Search
Strategies with Grammatical Evolution. In the proceedings of European Conference
on Genetic Programming (EuroGP2002) (pp. 268–277), Springer, 2002.

8. Ryan, C., and Azad, R.M.A., Sensible Initialisation in Chorus. Accepted for Eu-
ropean Conference on Genetic Programming (EuroGP 2003).

9. Ryan, C., Azad, A., Sheahan, A., and O’Neill, M., No Coercion and No Prohibition,
A Position Independent Encoding Scheme for Evolutionary Algorithms - The Cho-
rus System. In the Proceedings of European Conference on Genetic Programming
(EuroGP 2002) (pp. 131–141), Springer, 2002.

10. Ryan, C., Collins, J.J., and O’Neill, M., Grammatical Evolution: Evolving Pro-
grams for an Arbitrary Language, in EuroGP’98: Proc. of the First European
Workshop on Genetic Programming (Lecture Notes in Computer Science 1391,
pp- 83–95), Springer, Paris, France, 1998.


	Introduction
	Grammatical Evolution
	The Mapping Process

	Single Non-terminal Grammars
	Dual Non-terminal Grammars
	General Case
	Experiments
	Application Grammars

	Conclusions

