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Abstract. This paper presents an original study of fitness distance cor-
relation as a measure of problem difficulty in genetic programming. A
new definition of distance, called structural distance, is used and suit-
able mutation operators for the program space are defined. The difficulty
is studied for a number of problems, including, for the first time in GP,
multimodal ones, both for the new hand-tailored mutation operators and
standard crossover. Results are in agreement with empirical observations,
thus confirming that fitness distance correlation can be considered a rea-
sonable index of difficulty for genetic programming, at least for the set
of problems studied here.

1 Introduction

The fitness distance correlation (fdc) coefficient has been used as a tool for mea-
suring problem difficulty in genetic algorithms (GAs) and genetic programming
(GP) with controversial results: some counterexamples have been found for GAs
[15], but fdc has been proven an useful measure on a large number of GA (see
for example [3] or [9]) and GP functions (see [2,16]). In particular, Clergue and
coworkers ([2]) have shown fdc to be a reasonable way of quantifying problem
difficulty for GP for a set of functions.

In this paper, we use a measure of structural distance for trees (see [7]) to
calculate fdc. Then, we employ fdc to measure problem difficulty for two kinds
of GP processes: GP using the standard Koza’s crossover as the only genetic
operator (that we call from now on standard GP) and GP using two new mutation
operators based on the transformations on which structural distance is defined
(structural mutation genetic programming from now on). The test problems that
we have chosen are unimodal and multimodal trap functions, royal trees and two
versions of the MAX problem. The present study is the first attempt to quantify
problem difficulty of functions with multiple global optima with the same fitness
in evolutionary algorithms by the fdc.

This paper is structured as follows: the next section gives a short description
of the structural tree distance used in the paper, followed by the definition of the
basic mutation operators that go hand-in-hand with it. Section 4 presents the
main results and their discussion for a number of GP problems. Finally, Sect. 5
gives our conclusions and hints to future work.
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2 Distance Measure for Genetic Programs

In GAs individuals are represented as strings of digits and typical distance mea-
sures are Hamming distance or alternation. Defining a distance between geno-
types in GP is much more difficult, given the tree structure of the individuals. In
[2] an ad hoc distance between trees was used. In the spirit of the fdc definition
[9], it would be better to use GP operators that have a direct counterpart in the
tree distance. For that reason, we adopt the structural distance for trees pro-
posed in [7] and we define corresponding operators (see next section). According
to this measure, given the sets F and T of functions and terminal symbols, a
coding function c must be defined such that c : {T ∪ F} → IN. One can think
of many ways for the specification of c, for example the “complexity” of the
primitives or their arity. The distance between two trees T1 and T2 is calculated
in three steps: (1) T1 and T2 are overlapped at the root node and the process is
applied recursively starting from the leftmost subtrees (see [7] for a description
of the overlapping algorithm). (2) For each pair of nodes at matching positions,
the difference of their codes (eventually raised to an exponent) is computed. (3)
The differences computed in the previous step are combined in a weighted sum.
This gives for the distance between two trees T1 and T2 with roots R1 and R2
the following expression:

dist(T1, T2) = d(R1, R2) + k

m∑

i=1

dist(childi(R1), childi(R2)) (1)

where: d(R1, R2) = (|c(R1) − c(R2)|)z, childi(Y ) is the ith of the m possible
children of a generical node Y , if i ≤ m, or the empty tree otherwise, and c
evaluated on the root of an empty tree is 0. Constant k is used to give different
weights to nodes belonging to different levels and z is a constant usually chosen
in such a way that z ∈ IN. In most of this paper, except for the MAX function,
individuals will be coded using the same syntax as in [2] and [14], i.e. consid-
ering a set of functions A, B, C, etc. with increasing arity (i.e. arity(A) = 1,
arity(B) = 2, and so on) and a single terminal X (i.e. arity(X) = 0) as follows:
F = {A, B, C, D, . . .}, T = {X} and the c function will be defined as follows:
∀x ∈ {F ∪T } c(x) = arity(x)+1. In our experiments we will always set k = 1

2
and z = 2. By keeping 0 < k < 1, the differences near the root have higher
weight. This is convenient for GP as it has been noted that programs converge
quickly to a fixed root portion [11].

3 Structural Mutation Operators

In [13] O’Reilly used the edit distance, which is related to, but not identical
with the tree distance employed here. She also defined suitable edit operators
and related them to GP mutation. She used the edit distance for a different
purpose: how to measure and control the step size of crossover in order to balance
explotation and exploration in GP. She also suggested that edit distance could
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be useful in the study of GP fitness landscapes, but did not develop the issue.
Here we take up exactly this last point.

The following operators have been inspired by the distance definition pre-
sented in the last section and by the work in [13]. Given the sets F and T
and the coding function c defined in Sect. 2, we define cmax (respectively, cmin)
as the maximum (respectively, the minimum) value taken by c on the domain
{F ∪ T }. Moreover, given a symbol n such that n ∈ {F ∪ T } and c(n) < cmax

and a symbol m such that m ∈ {F ∪ T } and c(m) > cmin, we define: succ(n)
as a primitive such that c(succ(n)) = c(n) + 1 and pred(m) as a primitive such
that c(pred(m)) = c(m) − 1. Then we can define the following editing operators
on a generic tree T :

– inflate mutation. A primitive labelled with a symbol n such that c(n) <
cmax is selected in T and replaced by succ(n). A new random terminal node is
added to this new node in a random position (i.e. the new terminal becomes
the ith son of succ(n), where i is comprised between 0 and arity(n)).

– deflate mutation. A primitive labelled with a symbol m such that c(m) >
cmin, and such that at least one of his sons is a leaf, is selected in T and
replaced by pred(m). A random leaf, between the sons of this node, is deleted
from T .

The terms inflate and deflate have been used to avoid confusion with the similar
and well known grow and shrink mutations that have already been proposed in
GP. The following property holds (the proof appears in [17]):

Property 1. Distance/Operator Consistency.
Let’s consider the sets F and T and the coding function c defined in Sect. 2.
Let T1 and T2 be two trees composed by symbols belonging to {F ∪T } and let’s
consider the k and z constants of definition (1) to be equal to 1. If dist(T1, T2) =
D, then T2 can be obtained from T1 by a sequence of D

2 editing operations,
where an editing operation can be an inflate mutation or a deflate mutation.

From this property, we conclude that the operators of inflate mutation and de-
flate mutation are completely coherent with the notion of distance defined in
Sect. 2, i.e. an application of these operators allow us to move on the search
space from a tree to its neighbors according to that distance. We call the new
GP process based on these operators structural mutation genetic programming
(SMGP).

4 Experimental Results

In all experiments shown in the following, fdc has been calculated via a sampling
of 40000 randomly chosen individuals. All the experiments have been done with
generational GP, a total population size of 100 individuals, ramped half and a
half initialization, tournament selection of size 10. When standard GP has been
used, the crossover rate has been set to 95% and the mutation rate to 0%, while
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when SMGP has been employed, no crossover has been used and the rate of
the two new mutation operators has been set to 95%. The GP process has been
stopped either when a perfect solution has been found (global optimum) or when
500 generations have been executed. All experiments have been performed 100
times.

4.1 Fitness Distance Correlation

An approach proposed for GAs [9] states that an indication of problem hardness
is given by the relationship between fitness and distance of the genotypes from
known optima. Given a sample F = {f1, f2, ..., fn} of n individual fitnesses and a
corresponding sample D = {d1, d2, ..., dn} of the n distances to the nearest global
optimum, fdc is defined as: fdc = CF D

σF σD
, where: CFD = 1

n

∑n
i=1(fi − f)(di − d)

is the covariance of F and D and σF , σD, f and d are the standard deviations
and means of F and D. Given the tree structure of genotypes, the normalization
problem is not a trivial one in GP. Dividing all the distances in the sampling
by the maximum of all the possible distances between two trees in the search
space is not a practically applicable method, since it would give too large a
number for the typically used maximum tree depth and operator arity values.
This problem has been tackled in [4]. In [2], Clergue and coworkers used a “suf-
ficiently large” integer constant to obtain the normalisation of distances. Here,
similarly to [4], we obtain the normalized distance between two trees by divid-
ing their distance by the maximum value between the distances of the same
two trees from the empty one. As suggested in [9], GA problems can be empir-
ically classified in three classes, depending on the value of the fdc coefficient:
misleading (fdc ≥ 0.15), in which fitness increases with distance, unknown
(−0.15 < fdc < 0.15) in which there is virtually no correlation between fitness
and distance and straightforward (fdc ≤ −0.15) in which fitness increases
as the global optimum approaches. The second class corresponds to problems
for which the difficulty can’t be estimated, because fdc doesn’t bring any infor-
mation. In this case, examination of the fitness-distance scatterplot may give
information on problem difficulty (see [9]).

4.2 Unimodal Trap Functions

Trap functions [5] allow one to define the fitness of the individuals as a function
of their distance from the optimum, and the difficulty of trap functions can
be changed by simply modifying some parameters. A function f : distance →
fitness is a unimodal trap function if it is defined in the following way:

f(d) =






1 − d

B
if d ≤ B

R · (d − B)
1 − B

otherwise

where d is the distance of the current individual from the unique global opti-
mum, normalized so as to belong to the range [0, 1], and B and R are constants
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Fig. 1. (a): fdc values for some trap functions obtained by changing the values of the
constants B and R. (b): Performance (p) values of SMGP for traps. (d): Performance
(p) values of standard GP for traps. (c): Stucture of the tree used as optimum in the
experiments reported in (a), (b) and (d).
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Fig. 2. The trees used as optima in experiments analogous to the ones of Fig. 1.

belonging to [0, 1]. B allows to set the width of the attractive basin for each one
of the optima and R sets their relative importance. By construction, the diffi-
culty of trap functions decreases as the value of B increases, while it increases
as the value of R decreases. For a more detailed explanation of trap functions
see for instance [2]. Figure 1 show values of the performance p (defined as the
proportion of the runs for which the global optimum has been found in less than
500 generations over 100 runs) and of fdc for various trap functions obtained
by changing the values of the constants B and R. These experiments have been
performed considering the tree represented in Fig. 1c as the global optimum.
The same experiments have been performed using as global optimum the trees
shown in Fig. 2 and the results (not shown here for lack of space) are qualitatively
analogous to the ones of Fig. 1. In all cases fdc is confirmed to be a reasonable
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measure for quantifying problem difficulty both for SMGP and standard GP for
unimodal trap functions.

4.3 “W” Multimodal Trap Functions

Unimodal trap functions described in Sect. 4.2 are characterized by the presence
of a unique global optimum. The functions used here and first proposed in [6]
(informally called “W” trap functions, given their typical shape shown in Fig. 3)
are characterized by the presence of several global optima. They depend on
5 variables called B1, B2, B3, R1 and R2 and they can be expressed by the
following formula:

f(d) =






1 − d

B1
if d ≤ B1

R1 · (d − B1)
B2 − B1

if B1 ≤ d ≤ B2

R1 · (B3 − d)
B3 − B2

if B2 ≤ d ≤ B3

R2 · (d − B3)
1 − B3

otherwise

where B1, B2, B3, R1 and R2 are constants belonging to the interval [0, 1] and
the property B1 ≤ B2 ≤ B3 must hold. A systematic study of problem difficulty
for multimodal landscapes via an algebraic indicator such as fdc has, to our
knowledge, never been performed before in evolutionary computation. Here is
how our study has been performed: we choose a particular tree belonging to
the search space and we call it origin. Then we artificially assign a maximum
fitness (= 1) to this tree, so as to make it a global optimum. Then, if we set the

B
1

B
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B
3

R
2

R
1

Fi
tn

es
s  

(f
)

Distance (d)

Fig. 3. Graphical representation of a “W” trap function with B1 = 0.1, B2 = 0.3,
B3 = 0.7, R1 = 1, R2 = 0.7. Note that distances and fitness are normalized into the
interval [0, 1].
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Fig. 4. Two trees having a normalized distance equal to 0.5 between them

R1 constant to 1, all the trees having a normalized distance equal to B2 from
the origin, given the definition of “W” trap functions, have a fitness equal to 1
and thus are global optima too. Two series of experiments have been performed,
using both SMGP and standard GP. In the first one, the tree represented in
Fig. 4a is considered as the origin (let’s call this tree T1).

Since the tree in Fig. 4b (that we call T2) has a normalized distance of 0.5
from T1, if we set R1 to 1 and B2 to 0.5 then T2 is a global optimum too. To
calculate the fdc, the minimum of the distances from T1 and T2 to each tree in
the sampling is considered (as suggested for GAs by Jones in [9], even though
never practically experimented). The distribution of these “minimum distances”
has been studied on a sample of 40000 individuals and it appears to have a
regular shape, as it is the case for unimodal trap functions (results not shown
here for lack of space).

Since these series of experiments represent a first attempt to use fdc to mea-
sure the difficulty of fitness landscapes with more than one global optimum, and
since we want to be able to study the dynamics of the GP process in detail, we
have decided, as a first step, to use fitness landscapes containing only two global
optima. Thus, a random normalized fitness different from 1 has been arbitrarily
assigned to each tree having a distance equal to 0.5 from T1 and a genotype
different from T2. This choice, of course, alters the “W” trap functions definition
and influences the fitness landscape, even though only marginally. Anyway, we
consider this choice perfectly “fair”, given that we are not interested in testing
fdc on standard benchmarks, but rather on artificially defined fitness landscapes.
Table 1 shows a subset of the experimental results that we have obtained with
this first series of tests, by setting B2 to 0.5 and R1 to 1 and by varying the
values of B1, B3 and R2.

Given the enormous number of experiments performed (about 10000 GP
runs) and the limited space available, we couldn’t show all the results. Thus,
we have decided to proceed as follows: for each trap function (identified by
particular values of B1, B3 and R2), we have calculated the fdc. Then, we have
discarded all the traps for which the fdc is comprised between −0.15 and 0.15,
because no experimental result would give us any useful information for these
functions (see Sect. 4.1). For a subset of the other trap functions, 100 runs have
been performed with both SMGP and standard GP. Results shown in Table 1
are encouraging and suggest that fdc could be a reasonable measure to predict
problem difficulty for some typical “W” trap functions. The results not shown
in Table 1 are qualitatively similar and lead us to the same conclusions.
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Table 1. Results of fdc using SMGP and standard GP for a set of “W” trap functions
where the origin is the tree shown in Fig. 4a and the second global optimum is the one
shown in Fig. 4b; p stands for performance

fdc fdc prediction p (SMGP) p (stGP)
B1 = 0.4, B3 = 0.9, R2 = 0.5 -0.62 straightf. 0.75 0.81
B1 = 0.5, B3 = 0.8, R2 = 0.4 -0.88 straightf. 0.98 0.94
B1 = 0.3, B3 = 0.9, R2 = 0.7 -0.61 straightf. 0.80 0.77
B1 = 0.2, B3 = 0.9, R2 = 0.1 -0.69 straightf. 0.72 0.91
B1 = 0.1, B3 = 0.9, R2 = 0.3 -0.72 straightf. 0.85 0.98
B1 = 0.5, B3 = 0.6, R2 = 0.9 0.34 misleading 0.33 0.20
B1 = 0.4, B3 = 0.6, R2 = 0.9 0.36 misleading 0.14 0.30
B1 = 0.3, B3 = 0.6, R2 = 0.9 0.33 misleading 0.31 0.13

Table 2. Results of fdc using SMGP and standard GP for a set of “W” trap functions
where the origin is the tree shown in Fig. 5a and the second global optimum is the one
shown in Fig. 5b; p stands for performance

fdc fdc prediction p (SMGP) p (stGP)
B1 = 0.1, B3 = 0.1, R2 = 0.1 -0.76 straightf. 0.91 0.88
B1 = 0.1, B3 = 0.9, R2 = 0.1 -0.93 straightf. 0.97 0.99
B1 = 0.05, B3 = 0.7, R2 = 0.1 -0.90 straightf. 0.98 0.92
B1 = 0.1, B3 = 0.8, R2 = 0.5 -0.81 straightf. 0.90 0.83
B1 = 0.1, B3 = 0.5, R2 = 0.1 -0.71 straightf. 0.91 0.90
B1 = 0.05, B3 = 0.2, R2 = 0.9 0.89 misleading 0.02 0.13
B1 = 0.05, B3 = 0.4, R2 = 0.9 0.74 misleading 0.35 0.17
B1 = 0.05, B3 = 0.1, R2 = 0.6 0.78 misleading 0.25 0.23
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Fig. 5. Two trees having a normalized distance equal to 0.1 between them

Analogous experiments have also been performed by considering the tree in
Fig. 5a as the origin and the tree in Fig. 5b as the second global optimum. Since
the normalized distance between these two trees is equal to 0.1, this time B2 is
set to 0.1 and R1 to 1. Once again, a random normalized fitness different from 1
is assigned to all the trees having a distance equal to 0.1 from the one in Fig. 5a
and a genotype different from the one in Fig. 5b. A subset of the results of this
second series of experiments are shown in Table 2. These results are encouraging
too and seem to confirm the validity of the fdc both for SMGP and standard GP.

In any event, the amount of results shown in this section doesn’t allow us to
draw definitive conclusions: many more cases should be studied. For example,
in the case of fitness landscapes containing two global optima, a larger set of
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differently shaped trees should be considered as origin and as second global
optimum. Moreover, fitness landscapes with more than two global optima should
be investigated. However, a methodology for the study of difficulty of multimodal
landscapes has been proposed, and some non-trivial choices have been performed,
as the one of calculating fdc by considering the minimum of the distances from
the global optima for every individual of the sampling. These choices needed an
experimental confirmation. Results shown here are encouraging and should pave
the way for a deeper study of problem difficulty for multimodal lanscapes.

4.4 Royal Trees

The next functions we study are the royal trees proposed by Punch et al. [14].
The language used is the same as in Sect. 2, and the fitness of a tree (or any
subtree) is defined as the score of its root. Each function calculates its score
by summing the weighted scores of its direct children. If the child is a perfect
tree of the appropriate level (for instance, a complete level-C tree beneath a D
node), then the score of that subtree, times a FullBonus weight, is added to the
score of the root. If the child has a correct root but is not a perfect tree, then the
weight is PartialBonus. If the child’s root is incorrect, then the weight is Penalty.
After scoring the root, if the function is itself the root of a perfect tree, the final
sum is multiplied by CompleteBonus (see [14] for a more detailed explanation).
Values used here are as in [14] i.e. FullBonus = 2, PartialBonus = 1, Penalty
= 1

3 , CompleteBonus = 2. Different experiments, considering different nodes as
the node with maximum arity allowed, have been performed. Results are shown
in Table 3.

Predictions made by fdc for level-A, level-B, level-C and level-D functions
are correct. Level-E function is “difficult” to be predicted by the fdc (i.e. no
correlation between fitness and distance is observed). Finally, level-F and level-
G functions are predicted to be “misleading” (in accord with Punch in [14]) and
they really are, since the global optimum is never found before 500 generations.
Royal trees problem spans all the classes of difficulty as described by the fdc.

4.5 MAX Problem

The task of the MAX problem for GP, defined in [8] and [10], is “to find the
program which returns the largest value for a given terminal and function set

Table 3. Results of fdc for the Royal Trees; p stands for performance

Root fdc fdc prediction p (SMGP) p (stGP)
B -0.31 straightf. 1 1
C -0.25 straightf. 1 1
D -0.20 straightf. 0.76 0.70
E 0.059 unknown 0 0.12
F 0.44 misleading 0 0
G 0.73 misleading 0 0
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Table 4. Results of fdc for the MAX problem using SMGP and standard GP. The first
column shows the sets of functions and terminals used in the experiments; p stands for
performance

MAX problem fdc fdc prediction p (SMGP) p (stGP)
{+} {1} -0.87 straightf. 1 1

{+} {1,2} -0.86 straightf. 1 1

with a depth limit d, where the root node counts as depth 0”. We set d equal
to 8 and we use the set of functions F = {+} and the set of terminals T1 = {1}
or T2 = {1, 2}. When using T1, we specify the coding function c as: c(1) = 1,
c(+) = 2, when using T2, we pose: c(1) = 1, c(2) = 2, c(+) = 3. The study of
standard GP for these MAX functions comports no particular problem, while for
the case of SMGP, the definitions of the operators of inflate and deflate mutation
given in Sect. 3 must be slightly modified, since we are considering a different
coding language. The inflate and deflate mutations are now defined in such a
way that, when using T1, a terminal symbol 1 can be transformed in the subtree
T1 = +(1, 1) by one step of inflate mutation and the vice-versa can be done by
the deflate mutation. When using T2, the inflate mutation can transform a 1 node
into a 2 node and a 2 node into the subtrees T2 = +(2, 1) or T3 = +(1, 2) (with
a uniform probability). On the other hand, the deflate mutation can tranform
T1 or T2 into a leaf labelled by 2, and a 2 node into a 1 node. Table 4 shows the
fdc and p values for these test cases. Both problems are correctly classified as
straightforward by fdc, both for SMGP and standard GP.

5 Conclusions and Future Work

Two new kinds of tree mutations corresponding to the operations of the struc-
tural distance are defined in this paper. Fitness distance correlation (calculated
using this structural distance between trees) has been shown to be a reasonable
way of quantifying the difficulty of unimodal trap functions, of a restricted set
of multimodal trap functions, of royal trees, and of two MAX functions for GP
using these mutations as genetic operators, as well as for GP based on standard
crossover. The results show that, for the functions studied, using crossover or our
mutation operators, does not seem to have a marked effect on difficulty as mea-
sured by fdc. Thus the remarks of [1] and [12], and other work where it is claimed
that the standard GP crossover does not seem to markedly improve performance
with respect to other variation operators seem to be confirmed. Although fdc has
confirmed its validity in the present study, in view of some counterexamples for
GAs mentioned in the text, it remains to be seen whether the use of fdc extends
to other classes of functions, such as typical GP benchmarks. In the future we
plan to improve the study of problem difficulty of multimodal landscapes and
MAX functions (e.g. when F = {+, ∗} and T = {0.5}), and look for a measure
for GP difficulty that can be calculated without prior knowledge of the global
optima, thus eliminating the strongest limitation of fdc. Moreover, since fdc is
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surely not an infallible measure, we plan to build a counterexample for fdc in
GP. Another open problem consists in taking into account in the distance defi-
nition the phenomenon of introns (whereby two different genotypes can lead to
the same phenotypic behavior). Finally, we intend to look for a better measure
than performance to identify the success rate of functions, possibly independent
from the maximum number of generations chosen.
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