
Tournament Selection: Stable Fitness Pressure
in XCS

Martin V. Butz, Kumara Sastry, and David E. Goldberg

Illinois Genetic Algorithms Laboratory (IlliGAL)
University of Illinois at Urbana-Champaign,

104 S. Mathews, 61801 Urbana, IL, USA
{butz,kumara,deg}@illigal.ge.uiuc.edu

Abstract. Although it is known from GA literature that proportion-
ate selection is subject to many pitfalls, the LCS community somewhat
adhered to proportionate selection. Also in the accuracy-based learning
classifier system XCS, introduced by Wilson in 1995, proportionate se-
lection is used. This paper identifies problem properties in which perfor-
mance of proportionate selection is impaired. Consequently, tournament
selection is introduced which makes XCS more parameter independent,
noise independent, and more efficient in exploiting fitness guidance.

1 Introduction

Learning Classifier Systems (LCSs) [12,3] are rule learning systems in which rules
are generated by the means of a genetic algorithm (GA) [11]. The GA evolves
a population of rules, the so-called classifiers. A classifier usually consists of a
condition and an action part. The condition part specifies when the classifier is
applicable and the action part specifies which action to execute. In contrast to
the original LCSs, the fitness in the XCS classifier system, introduced by Wilson
[18], is based on the accuracy of reward predictions rather than on the reward
predictions directly. Thus, XCS is meant to not only evolve a representation of
an optimal behavioral strategy, or classification, but rather to evolve a repre-
sentation of a complete payoff map of the problem. That is, XCS is designed to
evolve a representation of the expected payoff in each possible situation-action
combination. Recently, several studies were reported that show that XCS per-
forms comparably to several other typical classification algorithms in different
standard machine learning problems [20,2,8].

Although many indicators can be found in the GA literature that point out
that proportionate selection is strongly fitness dependent [9] and moreover is
strongly dependent on the degree of convergence [10], the LCS community has
largely ignored this insight. In XCS, fitness is a scaled estimate of relative ac-
curacy of a classifier. Due to the scaling, it does not seem necessary to apply a
more fitness-independent selection method. Nonetheless, in this paper we iden-
tify problem types that impair the efficiency of proportionate selection. We show
that tournament selection makes XCS selection more reliable, outperforming
proportionate selection in all investigated problem types.

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 1857–1869, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

1858 M.V. Butz, K. Sastry, and D.E. Goldberg

We restrict our analysis to Boolean classification, or one-step, problems in
which each presented situation is independent of the history of situations and
classifications. Particularly, we apply XCS to several typical Boolean function
problems. In these problems, feedback is available immediately so that no rein-
forcement learning techniques are necessary that propagate reward [13].

The aim of this study is threefold. First, to make the XCS classifier system
more robust and more problem independent. Second, to contribute to the un-
derstanding of the functioning of XCS in general. Third, to prepare the XCS
classifier system to solve decomposable machine learning problems quickly, ac-
curately, and reliably.

The next section gives a short overview of the major mechanisms in XCS.
Next, the Boolean multiplexer problem is introduced and noise is added which
causes XCS to fail. Next, we introduce tournament selection to XCS. Section 5
provides further experimental comparisons of the two mechanisms in several
Boolean function problems with and without additional noise. Finally, we provide
summary and conclusions.

2 XCS in a Nutshell

Although XCS was also successfully applied in multi-step problems [18,14,15,1],
we restrict this study to classification problems to avoid the additional problem
of reward propagation. However, the insights of this study should readily carry
over to multi-step problems. This section consequently introduces XCS as a
pure classification system providing the necessary details to comprehend the
remainder of this work. For a more complete introduction to XCS the interested
reader is referred to the original paper [18] and the algorithmic description [6].

We define a classification problem as a problem that consists of problem
instances s ∈ S that need to be classified by XCS with one of the possible
classifications a ∈ A. The problem then provides scalar payoff R ∈ � with respect
to the made classification. The goal for XCS is to choose the classification that
results in the highest payoff. To do that, XCS is designed to learn a complete
mapping from any possible s×a combination to an accurate payoff value. To keep
things simple, we investigate problems with Boolean input and classification, i.e.
S ⊆ {0, 1}L where L denotes the fixed length of the input string and A = {0, 1}.

XCS evolves a population [P] of rules, or classifiers. Each classifier in XCS
consists of five main components. The condition C ∈ {0, 1, #}L specifies the sub-
space of the problem instances in which the classifier is applicable, or matches.
The “don’t care” symbol # matches in all input cases. The action part A ∈ A
specifies the advocated action, or classification. The payoff prediction p ap-
proaches the average payoff encountered after executing action A in situations in
which condition C matches. The prediction error ε estimates the average devia-
tion, or error, of the payoff prediction p. The fitness reflects the average relative
accuracy of the classifier with respect to other overlapping classifiers.

XCS iteratively updates its knowledge base with respect to each problem
instance. Given current input s, XCS forms a match set [M] consisting of all

Tournament Selection: Stable Fitness Pressure in XCS 1859

classifiers in [P] whose conditions match s. If an action is not represented in
[M], a covering classifier is created that matches s (#-symbols are inserted with
a probability of P# at each position). For each classification, XCS forms a payoff
prediction P (a), i.e. the fitness-weighted average of all reward prediction esti-
mates of the classifiers in [M] that advocate classification a. The payoff predic-
tions determine the appropriate classification. After the classification is selected
and sent to the problem, payoff R is provided according to which XCS updates all
classifiers in the current action set [A] which comprises all classifiers in [M] that
advocate the chosen classification a. After update and possible GA invocation,
the next iteration starts.

Prediction and prediction error parameters are update in [A] by p ← p +
β(R − p) and ε ← ε + β(|R − p| − ε) where β (β ∈ [0, 1]) denotes the learning
rate. The fitness value of each classifier in [A] is updated according to its current
scaled relative accuracy κ′:

κ =

{
1 if ε < ε0

α
(

ε0
ε

)ν otherwise
κ′ =

κ∑
x∈[A]

κx
(1)

F ← F + β(κ′ − F) (2)

The parameter ε0 (ε0 > 0) controls the tolerance for prediction error ε; param-
eters α (α ∈ (0, 1)) and ν (ν > 0) are constants controlling the rate of decline
in accuracy κ when ε0 is exceeded. The accuracy values κ in the action set [A]
are then converted to set-relative accuracies κ′. Finally, classifier fitness F is up-
dated towards the classifier’s current set-relative accuracy. Figure 1 shows how
κ is influenced by ε0 and α. The determination of κ, then, also causes the scaling
of the fitness function and thus strongly influences proportionate selection. All
parameters except fitness F are updated using the moyenne adaptive modifiée
technique [17]. This technique sets parameter values directly to the average of
the so far encountered cases as long as the experience of a classifier is still less
than 1/β. Each time the parameters of a classifier are updated, the experience
counter exp of the classifier is increased by one.

A GA is invoked in XCS if the average time since the last GA applica-
tion upon the classifiers in [A] exceeds threshold θga. The GA selects two
parental classifiers using proportionate selection (the probability of selecting
classifier cl (Ps(cl)) is determined by its relative fitness in [A], i.e. Ps(cl) =
F (cl)/

∑
c∈[A] F (c)). Two offspring are generated reproducing the parents and

applying (two-point) crossover and mutation. Parents stay in the population
competing with their offspring. We apply free mutation in which each attribute
of the offspring condition is mutated to the other two possibilities with equal
probability. Parameters of the offspring are inherited from the parents, except
for the experience counter exp which is set to one, the numerosity num which is
set to one, and the fitness F which is multiplied by 0.1. In the insertion process,
subsumption deletion may be applied [19] to stress generalization. Due to the
possible strong effects of action-set subsumption we apply GA subsumption only.

1860 M.V. Butz, K. Sastry, and D.E. Goldberg

1−α

ε0

ε

κ

}

}
ν ε0,

Fig. 1. The scaling of accuracy κ is crucial for successful proportionate selection. Pa-
rameters ε0, α, and ν control tolerance, offset, and slope, respectively

The population of classifiers [P] is of fixed size N . Excess classifiers are
deleted from [P] with probability proportional to an estimate of the size of the
action sets that the classifiers occur in (stored in the additional parameter as).
If the classifier is sufficiently experienced and its fitness F is significantly lower
than the average fitness of classifiers in [P], its deletion probability is further
increased.

3 Trouble for Proportionate Selection

Proportionate selection depends on fitness relative to action set [A]. The fitness F
of a classifier is strongly influenced by the accuracy determination of Equation 1
visualized in Fig. 1. F is also influenced by the number of classifiers in the
action sets the classifier participates in. Moreover, the initial fitness of offspring
is decreased by 0.1 so that it may take a while until the superiority of offspring
is reflected by its fitness value. To infer these dependencies, we apply XCS to the
Multiplexer problem with altered parameter settings or with additional noise in
the payoff function of the problem.

The multiplexer problem is a widely studied problem in LCS research [7,18,
19,4]. It has been shown that LCSs are superior compared to standard machine
learning algorithms, such as C4.5, in the multiplexer task [7]. The multiplexer
problem is a Boolean function. The function is defined for binary strings of
length k + 2k. The output of the multiplexer function is determined by the bit
situated at the position referred to by the k position bits. For example, in the
six multiplexer f(100010) = 1, f(000111) = 0, or f(110101) = 1. A correct
classification results in a payoff of 1000 while an incorrect classification results
in a payoff of 0.

Tournament Selection: Stable Fitness Pressure in XCS 1861

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

pe
rf

or
m

an
ce

, p
op

.s
iz

e
(/

20
00

)

explore problems

XCS in the 20 multiplexer problem, β dependence

β=0.20, α=1.0, ε0=1: perf
|[P]|

β=0.05, α=1.0, ε0=1: perf
|[P]|

β=0.05, α=0.1, ε0=10: perf
|[P]|

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

pe
rf

or
m

an
ce

, p
op

.s
iz

e
(/

20
00

)

explore problems

XCS in the 20 multiplexer problem, P# dependence

P#=0.6: perf
|[P]|

P#=0.8: perf
|[P]|

P#=1.0: perf
|[P]|

Fig. 2. Decreasing learning rate β decreases XCS learning performance (left-hand side).
Accuracy function parameters have no immediate influence. Also a decrease in initial
specificity strongly decreases XCS’s performance (right-hand side)

Figure 2 reveals the strong dependence on parameter β.1 Decreasing the
learning rate hinders XCS from evolving an accurate payoff map. The problem
is that over-general classifiers occupy a big part of the population initially. Better
offspring often looses against the over-general parents since the fitness of the off-
spring only increases slowly (due to the low β value) and small differences in the
fitness F only have small effects when using proportionate selection. Altering the
slope of the accuracy curve by changing parameters α and ε0 does not have any
positive learning effect, either. Later, we show that small β values are necessary
in some problems so that increasing β does not solve this problem in general.
Figure 2 (right-hand side) also reveals XCS’s dependence on initial specificity.
Increasing P# (effectively decreasing initial specificity) impairs learning speed
of XCS facing the schema challenge [4].

Additional to the dependence on β we can show that XCS is often not able to
solve noisy problems. We added two kinds of noise to the multiplexer problem:
(1) Gaussian noise is added to the payoff provided by the environment. (2) The
payoff is alternated with a certain probability, termed alternating noise in the
remainder of this work. Figure 3 shows that when adding only a small amount
of either noise, XCS’s performance is strongly affected. The more noise is added,
the smaller the fitness difference between accurate and inaccurate classifiers.
Thus, selection pressure decreases due to proportionate selection so that the
population starts to drift at random. Lanzi [15] proposed an extension to XCS
that detects noise in environments and adjusts the error estimates accordingly.
This approach, however, does not solve the β problem.

1 All results herein are averaged over 50 experimental runs. Performance is assessed
by test trials in which no learning takes place and the better classification is chosen
as the classification. During learning, classifications are chosen at random. If not
stated differently, parameters were set as follows: N = 2000, β = 0.2, α = 1, ε0 = 1,
ν = 5, θGA = 25, χ = 0.8, µ = 0.04, θdel = 20, δ = 0.1, θsub = 20, and P# = 0.6.

1862 M.V. Butz, K. Sastry, and D.E. Goldberg

0

0.2

0.4

0.6

0.8

1

0 50000 100000 150000 200000 250000 300000

pe
rf

or
m

an
ce

, p
op

.s
iz

e
(/

20
00

)

explore problems

XCS in the 20 multiplexer problem, Gaussian noise dependence

σ=50: perf
|[P]|

σ=100: perf
|[P]|

σ=150: perf
|[P]|

0

0.2

0.4

0.6

0.8

1

0 50000 100000 150000 200000 250000 300000

pe
rf

or
m

an
ce

, p
op

.s
iz

e
(/

20
00

)

explore problems

XCS in the 20 multiplexer problem, alternating noise dependence

noise=0.05: perf
|[P]|

noise=0.10: perf
|[P]|

noise=0.15: perf
|[P]|

Fig. 3. Adding noise to the payoff function of the multiplexer significantly deteriorates
performance of XCS. Gaussian noise (left-hand side) or alternating noise (right-hand
side) is added

4 Stable Selection Pressure with Tournament Selection

By contrast to proportionate selection, tournament selection is independent of
fitness scaling [9]. In tournament selection parental classifiers are not selected
proportional to their fitness, but tournaments are held in which the classifier with
the highest fitness wins (stochastic tournaments are not considered herein). Par-
ticipants for the tournament are usually chosen at random from the population
in which selection is applied. The size of the tournament controls the selection
pressure. Usually, fixed tournament sizes are used.

Compared to standard GAs, the GA in XCS is a steady-state, niched GA.
Only two classifiers are selected in each GA application. Moreover, selection is
restricted to the current action set. Thus, some classifiers might not get any
reproductive opportunity at all before being deleted from the population. Ad-
ditionally, action set sizes can vary significantly. Initially, action sets are often
over-populated with over-general classifiers. Thus, a relatively strong selection
pressure appears to be necessary which adapts to the current action set size.

Our tournament selection process holds tournaments of sizes dependent on
the current action set size |[A]| by choosing a fraction τ of classifiers (τ ∈ (0, 1])
in the current action set. 2 Instead of proportionate selection, two independent
tournaments are held in which the classifier with the highest fitness is selected.
We also experimented with fixed tournament sizes, as shown below, which did
not result in a stable selection pressure.

Figure 4 shows that XCS with tournament selection, referred to as XCSTS
in the remainder of this work, can solve the 20-Multiplexer problem even with
a low parameter value β. The curves show that XCSTS is more independent of
parameter β. Even lower values of β, of course, ultimately also impair XCSTS’s
performance. In the case of a more general initial population (P# = 1.0) XCSTS
2 If not stated differently, τ is set to 0.4 in the subsequent experimental runs.

Tournament Selection: Stable Fitness Pressure in XCS 1863

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

pe
rf

or
m

an
ce

, p
op

.s
iz

e
(/

20
00

)

explore problems

XCSTS in the 20 multiplexer problem, β dependence

β=0.20, α=1.0, ε0=1: perf
|[P]|

β=0.05, α=1.0, ε0=1: perf
|[P]|

β=0.05, α=0.1, ε0=10: perf
|[P]|

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

pe
rf

or
m

an
ce

, p
op

.s
iz

e
(/

20
00

)

explore problems

XCSTS in the 20 multiplexer problem, P# dependence

P#=0.6: perf
|[P]|

P#=0.8: perf
|[P]|

P#=1.0: perf
|[P]|

Fig. 4. XCSTS is barely influenced by a decrease of learning rate β. Accuracy param-
eters do not influence learning behavior. An initial over-general population (P# = 1.0)
does hardly influence learning, either (right-hand side)

0

0.2

0.4

0.6

0.8

1

0 50000 100000 150000 200000 250000 300000

pe
rf

or
m

an
ce

, p
op

.s
iz

e
(/

20
00

)

explore problems

XCSTS in the 20 multiplexer problem, Gaussian noise dependence

σ=250: perf
|[P]|

σ=500: perf
|[P]|

β=0.05, σ=500: perf
|[P]|

0

0.2

0.4

0.6

0.8

1

0 50000 100000 150000 200000 250000 300000

pe
rf

or
m

an
ce

, p
op

.s
iz

e
(/

20
00

)

explore problems

XCSTS in the 20 multiplexer problem, alternating noise dependence

noise=0.05: perf
|[P]|

noise=0.10: perf
|[P]|

noise=0.15: perf
|[P]|

Fig. 5. XCSTS performs much better than XCS in noisy problems. For example, per-
formance of XCSTS with Gaussian noise σ = 250 is better than XCS’s performance
with σ = 50 noise. Lowering β allows XCSTS to solve problems with even σ = 500

detects accurate classifiers faster and thus hardly suffers at all from the initial
over-general population.

Figure 5 shows that XCSTS is much more robust in noisy problems as well.
XCSTS solves Gaussian noise with a standard deviation of σ = 250 better than
XCS the σ = 100 setting. In the case of alternating noise, XCSTS solves the Px =
0.1 noise case faster than XCS the Px = 0.05 case. As expected, the population
sizes do not converge to the sizes achieved without noise since subsumption
does not apply. Nonetheless, in both noise cases the population sizes decrease
indicating the detection of accurate classifiers.

1864 M.V. Butz, K. Sastry, and D.E. Goldberg

5 Experimental Study

This section investigates XCSTS’s behavior further. We show the effect of a
fixed tournament size and different proportional tournament sizes τ . We also
apply XCS to the multiplexer problem with layered reward as well as to the
layered count ones problem. In the latter problem, recombinatory events are
highly beneficial.

5.1 Fixed Tournament Sizes

XCS’s action sets vary in size and in distribution. Dependent on the initial
specificity in the population (controlled by parameter P#), the average action
set size is either large or small initially. It was shown that the average specificity
in an action set is always smaller than the specificity in the whole population
[5]. Replication in action sets and deletion from the whole population results in
an implicit generalization pressure that can only be overcome by a sufficiently
large specialization pressure. Additionally, the distribution of the specificities
depends on initial specificity, problem properties, the resulting fitness pressure,
and learning dynamics. Thus, an approach with fixed tournament size is quite
dependent on the particular problem and probably not flexible enough.

In Fig. 6 we show that XCSTS with fixed tournament size only solves the mul-
tiplexer problem with the large tournament size of 12. With lower tournament
sizes not enough selection pressure is generated. Since the population is usually
over-populated with over-general classifiers early in a run, action set sizes are
large so that a too small tournament size usually results in a competition among
over-general classifiers. Thus, not enough fitness pressure is generated. Adding
noise, an even larger tournament size is necessary for learning. A tournament
size of 32, however, does not allow any useful recombinatory events anymore
since the action set size itself is usually not much bigger than that. Thus, fixed
tournament sizes are inappropriate for XCS’s selection mechanism.

5.2 Layered Boolean Multiplexer

The layered multiplexer [18] provides useful fitness guidance for XCS [4]. The
more position bits are specified (starting from the most significant one) the
less different reward levels are available and the closer the values of the different
reward levels are together so that classifiers that have more position bits specified
have higher accuracy. Consequently, those classifiers get propagated. Thus, the
reward scheme somewhat simplifies the problem.

The exact equation of the reward scheme is Int(positionbits) ∗ 200 +
Int(referencedbit) ∗ 100. An additional reward of 300 is added if the classi-
fication was correct. For example, in the 6-multiplexer the (incorrect) classifica-
tion 0 of instance (100010) would result in a payoff of 500 while the (correct)
classification 1 would result in a payoff of 800.

We ran a series of experiments in the layered 20-Multiplexer increasing Gaus-
sian noise. Figure 7 shows results for noise values σ = 100 and σ = 300. With a

Tournament Selection: Stable Fitness Pressure in XCS 1865

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

pe
rf

or
m

an
ce

, p
op

.s
iz

e
(/

20
00

)

explore problems

XCSTS in the 20 multiplexer problem, fixed tournament size

τ=4: perf
|[P]|

τ=8: perf
|[P]|

τ=12: perf
|[P]|

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

pe
rf

or
m

an
ce

, p
op

.s
iz

e
(/

20
00

)

explore problems

XCSTS in the 20 multiplexer problem, σ=250, fixed tourn. size

τ=8: perf
|[P]|

τ=16: perf
|[P]|

τ=32: perf
|[P]|

Fig. 6. Due to fluctuations in action set sizes and distributions as well as the higher
proportion of more general classifiers in action sets, fixed tournament sizes are inap-
propriate for selection in XCSTS

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

pe
rf

or
m

an
ce

, p
op

.s
iz

e
(/

20
00

)

explore problems

XCS(TS) in the layered 20 multiplexer problem, noise σ=100

XCS, β=0.05: perf
|[P]|

XCS, β=0.20:: perf
|[P]|

XCSTS, β=0.05: perf
|[P]|

XCSTS, β=0.20: perf
|[P]|

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000120000140000

pe
rf

or
m

an
ce

, p
op

.s
iz

e
(/

20
00

)

explore problems

XCS in the layered 20 multiplexer problem, noise σ=300

XCS, β=0.05: perf
|[P]|

XCS, β=0.20:: perf
|[P]|

XCSTS, β=0.05: perf
|[P]|

XCSTS, β=0.20: perf
|[P]|

Fig. 7. Gaussian noise disrupts performance of XCS more than performance of XCSTS.
While in a problem with little noise a higher value of parameter β allows faster learning,
in settings with more noise high β values cause too high fluctuations and are thus
disruptive. XCS fails to solve a noise level σ = 300 with either setting of parameter β
while XCSTS still reaches 100% performance with parameter β set to 0.05

noise with standard deviation σ = 100, XCS as well as XCSTS have no problem
to solve the task even with the lower learning rate β = 0.05 for XCS. XCSTS
however already learns faster than XCS. With a noise of σ = 300 performance
of XCS does hardly increase at all. XCSTS learns with either learning rate set-
ting but reaches 100% knowledge only with a learning rate of β = 0.05. This
shows that a lower learning rate is necessary in noisy problems since otherwise
fluctuations in classifier parameter values can cause disruptions.

1866 M.V. Butz, K. Sastry, and D.E. Goldberg

5.3 Layered Count Ones Problem

The final Boolean function in this study is constructed to reveal the benefit of re-
combination in XCS(TS). While in GA research whole conferences are filled with
studies on crossover operators, linkage learning GAs, or the more recent proba-
bilistic model building GAs (PMBGAs) [16], LCS research has largely neglected
the investigation of the crossover operator. Herein, we take a first step towards
understanding the possible usefulness of recombination in XCS by constructing
a problem in which the recombination of low-fitness classifiers can increasingly
result in higher fitness.

We term the problem the layered count ones problem. In this problem a
subset of a Boolean string determines the class of the problem. If the number
of ones in this subset is greater than half the size of the subset, then the class
is one and otherwise zero. Additionally, we layer the payoff somewhat similarly
to the layered multiplexer problem. The amount of payoff is dependent on the
number of ones in the relevant bits and not the integer value of the relevant
bits. For example, consider the layered count ones problem 5/3 (a binary string
of length five with three relevant bits) and a maximal payoff of 1000. Assuming
that the first three bits are relevant, the classification of 1 of string 10100 would
be correct and would result in a payoff of 666 while the incorrect classification
0 would result in a payoff of 333. Similarly, a classification of 1 of string 00010
would result in a payoff of 0 while the correct classification 0 would give a payoff
of 1000. Thus, always the correct classification results in the higher payoff.

Figure 8 shows runs in the layered count ones problem with string length
L = 70 and five relevant bits. Without any additional Gaussian noise, XCSTS
outperforms XCS. To solve the problem at all, the initial specificity needs to
be set very low (P# = 0.9) to avoid the covering challenge [4]. Mutation needs
to be set low enough to avoid over-specialization via mutation [5]. Runs with a
mutation rate µ = 0.04 (not shown) failed to solve the problem. Performance

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

pe
rf

or
m

an
ce

, p
op

.s
iz

e
(/

20
00

)

explore problems

XCS in the 70/5 layered count ones problem

XCS: perf
|[P]|

XCSTS, τ=0.2: perf
|[P]|

XCSTS, τ=0.6: perf
|[P]|

XCSTS, τ=1.0: perf
|[P]|

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

pe
rf

or
m

an
ce

, p
op

.s
iz

e
(/

20
00

)

explore problems

XCS in the 70/5 layered count ones problem, noise σ=200

XCS: perf
|[P]|

XCSTS, τ=0.4: perf
|[P]|

XCSTS, τ=0.4, unif. X: perf
|[P]|

XCSTS, τ=1.0: perf
|[P]|

Fig. 8. Also in the layered count ones problem tournament selection has better perfor-
mance. The benefit of crossover becomes clearly visible. Performance increases when
uniform crossover is applied whereas it decreases when no mixing (τ = 1.0) can occur

Tournament Selection: Stable Fitness Pressure in XCS 1867

stalls at approximately 0.8 regardless of the selection type. Figure 8 (left-hand
side) also shows that a higher tournament size proportion τ decreases the proba-
bility of recombining different classifiers. Thus, the evolutionary process cannot
benefit from efficient recombination and learning speed decreases. Note however
that proportionate selection is still worse than the selection type that always
chooses the classifier with the highest fitness (τ = 1.0). This indicates that re-
combination, albeit helpful, does not seem to be mandatory. The more important
criterion for a reliable convergence is a proper selection pressure.

Adding Gaussian noise of σ = 250 to the layered count ones problem again
completely deteriorates XCS’s performance (Fig. 8, right-hand side). Noise hin-
ders mutation even more from doing the trick. After 100, 000 learning steps only
selection with proper recombination was able to allow the evolution of perfect
performance (Fig. 8). Perpetual selection of the best classifier hinders crossover
from recombining classifiers that are partially specified in the relevant bits so
that the evolutionary process is significantly delayed.

6 Summary and Conclusions

This paper showed that proportionate selection can prevent proper fitness pres-
sure and thus successful learning in XCS. Applying tournament selection selec-
tion results in better (1) parameter independence, (2) noise robustness, and (3)
recombinatory efficiency. No problem was found in which XCS with tournament
selection with an action-set proportionate tournament size performed worse than
proportionate selection. Thus, it is clear that future research in XCS should start
using tournament selection instead of proportionate selection.

Despite the recent first insights in problem difficulty it remains unclear which
problems are really hard for XCS. Moreover, it remains to be shown in which
machine learning problems crossover is actually useful or even mandatory for
successful learning in XCS and LCSs in general. In XCS the recombination of
important substructures should lead to successively higher accuracy. In strength-
based LCSs, on the other hand, the recombination of substructures should lead
to larger payoff. Due to the apparent importance of recombinatory events in
nature as well as in GAs, these issues deserve further detailed investigations in
the realm of LCSs.

Acknowledgment. We are grateful to Xavier Llora, Martin Pelikan, Abhishek
Sinha, and the whole IlliGAL lab. The work was sponsored by the Air Force
Office of Scientific Research, Air Force Materiel Command, USAF, under grant
F49620-00-0163. Research funding was also provided by a grant from the Na-
tional Science Foundation under grant DMI-9908252. The US Government is au-
thorized to reproduce and distribute reprints for Government purposes notwith-
standing any copyright notation thereon. Additional support from the Auto-
mated Learning Group (ALG) at the National Center for Supercomputing Ap-
plications (NCSA) is acknowledged. Additional funding from the German re-
search foundation (DFG) under grant DFG HO1301/4-3 is acknowledged. The

1868 M.V. Butz, K. Sastry, and D.E. Goldberg

views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the Air Force Office of Scientific Research, the
National Science Foundation, or the U.S. Government.

References

1. Barry, A.: A hierarchical XCS for long path environments. Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2001) (2001) 913–
920

2. Bernadó, E., Llorà, X., Garrell, J.M.: XCS and GALE: A comparative study of
two learning classifier systems and six other learning algorithms on classification
tasks. In Lanzi, P.L., Stolzmann, W., Wilson, S.W., eds.: Advances in Learning
Classifier Systems: 4th International Workshop, IWLCS 2001. Springer-Verlag,
Berlin Heidelberg (2002) 115–132

3. Booker, L.B., Goldberg, D.E., Holland, J.H.: Classifier systems and genetic algo-
rithms. Artificial Intelligence 40 (1989) 235–282

4. Butz, M.V., Kovacs, T., Lanzi, P.L., Wilson, S.W.: How XCS evolves accurate
classifiers. Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2001) (2001) 927–934

5. Butz, M.V., Pelikan, M.: Analyzing the evolutionary pressures in XCS. Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO 2001) (2001)
935–942

6. Butz, M.V., Wilson, S.W.: An algorithmic description of XCS. In Lanzi, P.L.,
Stolzmann, W., Wilson, S.W., eds.: Advances in Learning Classifier Systems: Third
International Workshop, IWLCS 2000. Springer-Verlag, Berlin Heidelberg (2001)
253–272

7. De Jong, K.A., Spears, W.M.: Learning concept classification rules using genetic
algorithms. IJCAI-91 Proceedings of the Twelfth International Conference on
Artificial Intelligence (1991) 651–656

8. Dixon, P.W., Corne, D.W., Oates, M.J.: A preliminary investigation of modified
XCS as a generic data mining tool. In Lanzi, P.L., Stolzmann, W., Wilson, S.W.,
eds.: Advances in Learning Classifier Systems: 4th International Workshop, IWLCS
2001. Springer-Verlag, Berlin Heidelberg (2002) 133–150

9. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in
genetic algorithms. Foundations of Genetic Algorithms (1991) 69–93

10. Goldberg, D.E., Sastry, K.: A practical schema theorem for genetic algorithm
design and tuning. Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2001) (2001) 328–335

11. Holland, J.H.: Adaptation in natural and artificial systems. Universtiy of Michigan
Press, Ann Arbor, MI (1975) second edition 1992.

12. Holland, J.H.: Adaptation. In Rosen, R., Snell, F., eds.: Progress in Theoretical
Biology. Volume 4. Academic Press, New York (1976) 263–293

13. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey.
Journal of Artificial Intelligence Research 4 (1996) 237–258

14. Lanzi, P.L.: An analysis of generalization in the XCS classifier system. Evolutionary
Computation 7 (1999) 125–149

15. Lanzi, P.L., Colombetti, M.: An extension to the XCS classifier system for stochas-
tic environments. Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO-99) (1999) 353–360

Tournament Selection: Stable Fitness Pressure in XCS 1869

16. Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by building and us-
ing probabilistic models. Computational Optimization and Applications 21 (2002)
5–20

17. Venturini, G.: Adaptation in dynamic environments through a minimal probability
of exploration. From Animals to Animats 3: Proceedings of the Third International
Conference on Simulation of Adaptive Behavior (1994) 371–381

18. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3
(1995) 149–175

19. Wilson, S.W.: Generalization in the XCS classifier system. Genetic Programming
1998: Proceedings of the Third Annual Conference (1998) 665–674

20. Wilson, S.W.: Get real! XCS with continuous-valued inputs. In Lanzi, P.L., Stolz-
mann, W., Wilson, S.W., eds.: Learning Classifier Systems: From Foundations to
Applications. Springer-Verlag, Berlin Heidelberg (2000) 209–219

	Introduction
	XCS in a Nutshell
	Trouble for Proportionate Selection
	Stable Selection Pressure with Tournament Selection
	Experimental Study
	Fixed Tournament Sizes
	Layered Boolean Multiplexer
	Layered Count Ones Problem

	Summary and Conclusions

