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Abstract. Extended Classifier Systems, or XCS, have been shown to be suc-
cessful at developing accurate, complete and compact mappings of a problem’s 
payoff landscape. However, the experimental results presented in the literature 
frequently utilize population sizes significantly larger than the size of the search 
space. This resource requirement may limit the range of problem/hardware 
combinations to which XCS can be applied. In this paper two sets of modifica-
tions are presented that are shown to improve performance in small size-
constrained 6-Multiplexer and Woods-2 problems.  

1   Introduction 

An extended classifier system, or XCS, is a rule-based machine learning framework 
developed by Stewart Wilson [3,15,16] that has been shown to posses some very ap-
pealing properties. Chiefly, XCS has been found to develop accurate, complete and 
compact mappings of a problem’s search space [6,10,15,16]. However, to be success-
ful XCS can require a population size large enough to allow the system to maintain, at 
least initially, a number of unique classifiers (i.e., macroclassifiers) constituting a 
significant portion of the size of the search space. This potentially prohibitive resource 
requirement can prevent XCS from being successful where the system is size-
constrained, that is, where the population size is smaller than the search space. 

As XCS-based systems find application in industry (and particularly in cost-
constrained commercial applications), size-constrained systems are likely to be fre-
quently encountered. In an effort to broaden the range of situations in which XCS-
based systems can be utilized, this paper presents two sets of modifications that have 
been found to significantly improve system performance in small size-constrained 
problem/population configurations.  

Improving upon techniques employed by Dawson and Juliano in [5], the first set of 
mostly minor modifications attempt to make more cautious use of the limited re-
sources available to a size-constrained system. The second modified system builds 
upon the first and, among other changes, uses an effectiveness-based fitness measure 
(i.e., a strength/accuracy hybrid) - thus resulting in a system that develops a partial 
map of the payoff landscape. Experimental results are reported that demonstrate the 
performance improvement observed when using the proposed modifications in size-
constrained 6-Multiplexer and Woods-2 problems. 
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2    XCS: Developing Accurate, Complete, and Compact Populations 

Building upon his strength-based ZCS [14], Wilson introduced XCS in [15] as a solu-
tion to many of the problems encountered in traditional strength-based classifier sys-
tems. Namely, the problems of overgeneral classifiers, greedy classifier selection, and 
the interaction of the two [4,8,9,10,15]. Through the use of a simplified architecture, 
an accuracy-based fitness measure, a Q-Learning [12] like credit distribution algo-
rithm and a niche Genetic Algorithm (GA) [1] – XCS is motivated towards the devel-
opment of accurate, complete and compact maps of a problem’s search space. 

While earlier work had utilized various forms of accuracy as a factor in determin-
ing a classifier’s fitness, Wilson demonstrated with XCS that the use of accuracy alone 
could lead the GA to develop a stable population of classifiers that accurately predict 
the reward anticipated as a result of their activation.   

The completeness and compactness of the solution developed by XCS stems from 
its use of a niche GA as well as the accuracy-based fitness measure.  The niche GA, 
introduced by Booker [1], considers classifiers to be members of specific, functionally 
related subsets of the population and operates upon these subsets, or niches, rather 
than on the population as a whole.  By calculating a classifier’s fitness relative to the 
members of the niches in which it resides and searching within these niches, the GA 
drives the system towards the development of the minimal number of accurate classi-
fiers required to completely cover the search space. 

3   Size-Constrained Extended Classifier Systems 

Although the populations ultimately developed by XCS tend to be compact, and there-
fore significantly smaller than the search space (to a degree dependent upon the 
amount of generalization possible in the problem environment), the early stages of a 
run can require that the population contain a large number of classifiers, often consti-
tuting a significant percentage of the problem’s search space [6,10,11,15,16]. Typi-
cally this is not a problem as the population size is set large enough to more than en-
compass the problem’s search space. However, for practical application this may not 
always be possible as the size of the search space can simply exceed the physical limi-
tations of the hardware on which the system is to execute, or the population size may 
be limited by the need to share system resources with other processes. 

Lanzi identified in [11] that the tendency to generalize inherent in XCS may impair 
the system’s ability to succeed in environments which afford little opportunity for 
generalization, and that this effect could be diminished through the use of a new Spec-
ify operator implemented in his XCSS. The Specify operator attempts to identify 
overly general classifiers and produces specialized offspring from those classifiers 
with some number of their don’t-care bits (i.e., #’s) replaced by the corresponding bits 
in the current system input. Lanzi showed that as the population size was reduced, the 
performance of XCS and XCSS diminished in the Maze4 problem [11]. 

While Lanzi’s work was focused on improving the performance of XCS in prob-
lems allowing little generalization, this work aims to improve performance in size-
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constrained problem/population combinations. For the purposes of this paper we de-
fine a size-constrained system to be one in which the population size, N, is smaller 
than the size of the search space, S. In order to quantify the amount of size-constraint 
in a system (as required by some of the modifications proposed in this work), a new 
size-constraint measure, Ω, is introduced and determined by: 

Ω = 1+ ln ((S / N)c)) . (1) 

For all experiments reported in this work the value of the power parameter, c, was 
set to c=5. For configurations where N ≥ S, the size-constraint measure is set to 1. 
Note that this function was selected based simply on the fact that it resulted in values 
that appeared reasonable for the problems and population sizes evaluated in this work. 
A self tuning constraint measure (e.g., one taking into account such factors as the 
stability of the population) would seem to be in order. 

4   Modified Extended Classifier Systems 

This section presents the first set of modifications that are intended to improve the 
performance of size-constrained systems while still allowing the development of a 
complete map. For the sake of comparison the system utilizing these modifications is 
termed the Modified Extended Classifier System, or MXCS. 

4.1   Experience-Based GA Trigger Algorithm 

In XCS, the GA trigger algorithm attempts to evenly distribute GA activations across 
all encountered match/action sets regardless of the frequency with which those input 
states are encountered. Evenly distributing GA activations is achieved by triggering 
the GA when the average amount of time (i.e., exploration episodes) since the last GA 
activation on the set exceeds the given threshold value (θga). 

While the overall impact of this triggering algorithm may be beneficial, its experi-
ence-independent nature becomes problematic in size-constrained systems where the 
brittle nature of the smaller populations can be easily disturbed by “over-clocking” the 
GA, that is, producing classifiers faster than they can be evaluated by the system. 
Though the GA trigger threshold can be increased to overcome this, it becomes diffi-
cult to determine the appropriate value due to its experience-independent nature and 
the increase may result in a significantly diminished learning rate.  

MXCS modifies the trigger algorithm to use a simple experience-based threshold, 
where the GA is triggered when the given set contains any number of classifiers with 
experience since the GA last operated on it greater than the trigger threshold (θga). 
While this experience-based algorithm appears to favor classifiers covering frequently 
encountered inputs, the favoritism is ameliorated by the following modifications and 
dissipates once a maximally-general classifier is discovered covering that niche, as the 
offspring will tend to be subsumed [16] into the generalist.  
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4.2   Focused Deletion-Selection  

In XCS a classifier is selected for deletion from the population when the addition of a 
new classifier causes the population size to exceed the maximum size parameter (N). 

The deletion-selection process begins by assigning each classifier a deletion-vote, 
which is the product of the classifier’s numerosity (numcl) and the learned action set 
size estimate (ascl). The classifier’s numerosity indicates the number of identical clas-
sifiers (i.e., microclassifiers) in the population represented by the given macroclassi-
fier. The learned action set size estimate represents an average of the number of classi-
fiers present in the action sets to which the classifier belongs. If the classifier’s experi-
ence (expcl) is greater than the deletion threshold (θdel) and its fitness is less than a 
constant fraction (δ) of the mean fitness of the population, then the deletion vote is 
scaled by the difference between the classifier’s fitness and the mean population fit-
ness. Therefore, this algorithm calculates the deletion vote as follows [3,7,15]: 

votecl = numcl * ascl . (2) 

IF ((expcl > θdel) AND (fcl / numcl < δ * (Σ fpop / Σ numpop))) 

votecl = votecl * (Σ fpop / Σ numpop) / (fcl / numcl) . 

(3) 

Once the deletion vote of each classifier is determined, the XCS deletion-selection 
algorithm typically uses roulette-selection, where a classifier is probabilistically se-
lected from the population based on each classifier’s deletion vote. However, in size-
constrained systems roulette-selection can negatively impact system performance as its 
probabilistic nature often results in the deletion of effective and useful classifiers. 

MXCS modifies the deletion-selection method to deterministically select the classi-
fier with the highest deletion vote (i.e., a classifier is selected at random from the set 
of classifiers with the highest deletion vote). When using this max-deletion technique 
the deletion process maintains a strong downward pressure on the numerosity of clas-
sifiers, due to the deletion-vote factors of numerosity and action set size estimate.  

Though not utilized in [5], the MXCS described in this work further increases the 
pressure on classifier numerosities as the deletion vote is modified by raising the nu-
merosity factor by a power equivalent to the constraint measure, Ω, as follow: 

votecl = numcl
Ω * ascl . (4) 

4.3   Focused GA Selection 

In XCS the GA probabilistically selects parents for use in the generation of new off-
spring from the current set (action or match depending on placement of the GA) with 
the selection probability based on the value of each classifier’s fitness. MXCS intensi-
fies the focus on fit classifiers by basing the selection probability on the fitness of each 
classifier raised to the power of the constraint measure, Ω, as follows: 

prob(cl) = fcl
 Ω / Σf[A]

 Ω . (5) 
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4.4   Parameter Updates 

In an effort to avoid favoring classifiers frequently chosen for activation, XCS limits 
the updating of classifier parameters (such as experience, error, fitness and predicted 
payoff), to exploration steps only. MXCS is modified to update a classifier’s predic-
tion and error estimates on both exploration and exploitation steps. Though not re-
quired for the system to succeed, this is done in order to take full advantage of all the 
information returned from the environment. It should be noted that a bias is introduced 
in that accurate classifiers chosen on exploitation steps will have more chances to 
refine their predictions and will tend to have more refined accuracy estimates. 

5   Effectiveness-Based Extended Classifier System 

This section builds upon MXCS and introduces a new effectiveness-based classifier 
system (EXCS) that further reduces the resource requirements of the system by focus-
ing its resources on accurate and rewarding classifiers. This results in a far more com-
pact partial map as the system discards classifiers with low payoff predictions. 

Though the map developed by EXCS is an incomplete one, the use of a niche GA 
and the accuracy factor in the effectiveness measure allow the system to avoid the 
problems previously mentioned for purely strength-based systems [4,8,9,10,15]. 

5.1   Accuracy Function 

In developing EXCS it was found that the standard accuracy function used in XCS 
was too sensitive to fluctuations in prediction error and too insensitive to the classi-
fier’s long term accuracy history to be used in determining the effectiveness of classi-
fiers in highly competitive populations. This is particularly problematic in systems 
employing max-deletion due to the less forgiving nature of the algorithm. 

The accuracy function used in EXCS uses two factors to calculate a classifier’s ac-
curacy. First a weighted average of the classifier’s long-term accuracy is calculated. 
As shown in equations 6 and 7, this is accomplished by taking the ratio of the sum of 
the classifier’s accuracy over time (k_sumcl) and its experience (k_expcl) both dis-
counted at each update by a constant fraction, ψ. Owing to the power series that de-
velops with each update, the sensitivity of the function is determined by the value of 
(1- ψ)-1 to which the series (i.e., Σψn) converges. Therefore, the weight attributed to an 
accuracy recorded n steps ago is ψn. A value of ψ=0.999 was used in all experiments 
reported in this paper.   

Lastly, this new weighted accuracy average and the standard classifier accuracy 
measure are then averaged as shown in equation 8. 

k_sumcl = (k_sumcl * ψ) + kcl . (6) 

k_expcl = (k_expcl * ψ) + 1. (7) 

k_avecl = ((k_sumcl / k_expcl) + kcl ) / 2 . (8) 
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Note that this accuracy measure was not found to improve the performance of XCS 
and was therefore omitted from the MXCS implementation. It may be that accuracy-
based fitness functions require more drastic near-term changes in accuracy to be effec-
tive. 

5.2   Effectiveness-Based Fitness Measure 

Similar to the effectiveness measure utilized by Booker’s GOFER-1 [2], which was a 
function of a classifier’s “impact” (i.e., payoff), “consistency” (i.e., prediction error) 
and “match score” (i.e., specificity), EXCS measures classifier effectiveness as the 
product of a classifier’s predicted payoff (pcl), average accuracy (k_avecl) and general-
ity (gencl) – where generality is the percentage of the classifier’s condition consisting 
of don’t-care bits (#’s). Therefore, the effectiveness of an individual classifier is: 

effcl = pcl * k_avecl * gencl . (9) 

The fitness calculation in EXCS then proceeds as in XCS with two differences not 
found to improve the performance of MXCS. First, the GA in EXCS operates on the 
match set ([M]) with offspring actions determined by the crossover of the parent ac-
tions. This is done in order to cause the GA to drive the system towards a small num-
ber of effective actions per match set. Second, where XCS calculates a classifier’s 
fitness to be the portion of the niche’s accuracy sum attributed to that classifier, EXCS 
updates classifier fitness towards the ratio of a classifier’s effectiveness and the maxi-
mum effectiveness found in the match set, as shown in equation 10. 

fcl = fcl + β * (effcl / MAX(eff[M]) - fcl) . (10) 

The use of the maximum effectiveness in the match set prevents the fitness of each 
classifier from being impacted by the quantity of classifiers in the same match sets. 
This can be troublesome when comparing classifier fitness’s across GA niches, as in 
the deletion-selection process.  

It should also be noted that the action set size estimate, as, was changed for EXCS 
to measure the average size of the match sets in which the classifiers are found, rather 
than the action sets as in XCS and MXCS.  

5.3   Conflict-Resolution  

In order to accommodate the use of a partial map in EXCS, the conflict-resolution 
process must be modified. XCS appears to take great advantage of the fact that accu-
rate predictions of low payoff actions can be used to direct action selection towards 
higher payoff actions during conflict-resolution on exploitation steps.  

EXCS, on the other hand, is at a disadvantage as the incomplete map developed re-
sults in inexperienced or inaccurate classifiers with higher predictions appearing fa-
vorable to the conflict-resolution process due to the lack of accurate classifiers in the 
same set (e.g., the fitness weighted prediction of a classifier that is the only member of 
an action set is independent of the classifier’s fitness, and therefore accuracy). 
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This problem is overcome in EXCS by scaling the contribution of an inexperienced 
classifier (i.e., expcl < Ω * θdel) to the calculation of the prediction and fitness sums for 
an action set. As shown in equations 11 and 12 this is accomplished by scaling the 
prediction of an inexperienced classifier by the square of a small fraction (i.e., .012), 
and scaling the inexperienced classifier’s contribution to the fitness sum by the same 
small fraction (i.e., .01). 

Σ (p*f)[A] = Σ (p*f)[A]  + .012 * pcl * fcl . (11) 

Σ f[A] = Σ f[A] + .01 * fcl . (12) 

The use of the square of the fraction in the calculation of the payoff prediction sum 
helps to prevent the inexperienced classifier from overestimating its predicted payoff 
as well as protects against situations where the classifier is the only member of the 
action set. Using the fraction of the classifier’s fitness in the fitness sum for the action 
set prevents the inexperienced classifier from distorting the payoff predicted for that 
action set. Note that it was found to be beneficial to performance to use these scaling 
factors, rather than simply disregarding inexperienced classifiers. 

5.4   Population Culling 

The final modification made in EXCS is the introduction of a new deletion operation, 
termed culling. The purpose of the culling operation is to rapidly remove ineffective 
classifiers from the population. This is accomplished by immediately removing classi-
fiers before each invocation of the GA when the classifier’s experience is greater than 
the deletion threshold (expcl > θdel), its effectiveness is below the minimum error pa-
rameter (ε0) and the percentage of the population composed of such ineffective classi-
fiers is above a new cullling threshold (θcull – in all experiments reported in this paper, 
θcull=0.1). The process employed was to first determine the set of ineffective classifiers 
then randomly remove classifiers from this set until the threshold is met. 

The culling threshold is used as it was found to be beneficial to performance to 
leave some number of “easy targets” in the population for the deletion selection proc-
ess. Otherwise, should all ineffective classifiers be immediately removed, the deletion-
selection process tends to be forced to remove effective classifiers, as the bulk of the 
population consists of experienced effective classifiers and inexperienced classifiers 
with low deletion votes due to their low experience levels. 

6   Experimental Comparisons 

This section presents experimental results that compare the performance of XCS, 
MXCS and EXCS in size-constrained 6-Multiplexer and Woods-2 problems. 

Except for changes required for the described modifications the systems were im-
plemented to follow the XCS definition described by Butz and Wilson in [3]. System 
parameters for all experiments reported in this work are as in [15] except where noted. 
The covering threshold parameter (θmna) was set to require one classifier per match set. 
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This value yields better performance in size-constrained systems. For EXCS, the dele-
tion-vote fitness fraction (δ) was disregarded (i.e., set to infinity) as this was found to 
improve performance. This change had an adverse effect when used in XCS or 
MXCS, possibly owing to the greater amount of information encoded in the effective-
ness-based fitness measure. Classifier parameters were updated in the order: experi-
ence, error, prediction, and then fitness. 

Subsumption deletion [3,16] was used in all experiments, though a new subsump-
tion experience threshold (θsub[A]) was introduced for use in triggering action set sub-
sumption. Owing to the fact that the negative impact of an erroneous action set sub-
sumption can be far more severe than an erroneous GA subsumption, a higher sub-
sumption threshold was required. For all experiments reported in this work the value 
of the action set subsumption threshold was set to be ten times the size of the prob-
lem’s input space (i.e., the number of possible inputs). This gives occasionally errone-
ous classifiers more opportunities to be identified and removed from the system before 
subsuming other more accurate classifiers. Note that this level is certainly not intended 
to work for other problems with potentially much larger input spaces. It is merely 
intended to allow subsumption deletion to be used in the relatively small environments 
reported here. 

6.1   6-Multiplexer 

The multiplexer class of problems are frequently used in the literature as they present 
a challenging single step task with a scalable difficulty level capable of testing the 
systems ability to develop accurate, general and optimal rules.  

Only three of the six bits in any given input string of a 6-Mulitplexer (6-Mux) are 
important, the two address bits and the bit at the position pointed to by the address bits 
(i.e., the correct output). Due to this property, the system can develop general rules 
with don’t-care symbols in the ignored bit positions of their conditions that will accu-
rately encode the entire set of classifiers masked by that condition. For example, while 
the 6-Mux problem requires 128 unique and fully defined classifiers to be complete, a 
smaller set of 16 optimal classifiers can accurately cover the entire input space given a 
two-level payoff landscape. 

For all 6-Mux results reported in this work, the system inputs were randomly gen-
erated 6-bit strings. Rewards of 1000 and 0 were returned to the system for right and 
wrong answers respectively. 

The results presented in this work for the 6-Mux problem use two different per-
formance measures commonly reported in the literature: performance and optimality. 
Performance is a moving average of the percentage of the last 50 exploit steps that 
returned the correct output. Optimality measures the percentage of the optimal set of 
classifiers present in the population.  

As stated, for the 6-Mux problem with two payoff levels the optimal set consists of 
16 classifiers. However, in order to compare systems developing complete maps (i.e., 
XCS and MXCS) and partial maps (i.e., EXCS) the optimal set is restricted to those 
optimal classifiers that earn the maximum reward. Therefore, for the 6-mux problem 
the optimally-effective set of classifiers consists of 8 unique classifiers. 
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Furthermore, to facilitate a direct comparison of systems utilizing different GA trig-
gering algorithms the GA trigger threshold (θga) was selected for XCS so as to cause 
the GA to be invoked at the same rate as MXCS and EXCS. Therefore, θga for XCS 
with N=40 was set to θga=185 and θga for XCS with N=20 was set to θga=265. These 
values resulted in approximately the same number of GA invocations on average per 
run as the value of θga=25 used in the experience-based MXCS and EXCS GA trigger 
algorithms.  Note that the performance of XCS was not found to be greatly affected by 
any of the numerous other trigger values tested and results obtained with N=400 (not 
shown) closely approximated those reported by Wilson and others [6,10,15]. 

 Performance. Figure 1 shows performance in the 6-Mux problem at the two size-
constrained configurations of N=40 and N=20 (a size of N=400 is commonly used for 
the 6-Mux problem). As shown, XCS is unsuccessful at either constrained size. 
MXCS, on the other hand, achieves a successful population with N=40 but fails with 
N=20.  EXCS succeeds at both N=40 and N=20. 

Optimality. Figure 2 shows the optimality of the three systems. Due to the small 
population sizes XCS is unable to maintain much of the optimally-effective set of 
classifiers while MXCS succeeds with N=40 but performs poorly with N=20. EXCS 
performs well with both N=40 and N=20.  
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Fig. 1 (left) and Fig. 2 (right). 6-Mux performance (left) and optimality (right) of: XCS with 
N=40 (X1) and N=20 (X2), MXCS with N=40 (M1) and N=20 (M2), and EXCS with N=40 (E1) 
and N=20 (E2).  Curves are averages of 100 runs 

6.2   Woods-2 

This section compares the performance of XCS, MXCS and EXCS in the Woods-2 
problem. Though, as Kovacs explains in [10], Woods-2 is not a very difficult test of 
the abilities of a system to learn sequential decision tasks, it serves as a standard 
benchmark by which we can compare the system’s responses to population pressure. 

Woods-2, developed by Wilson [15], is a multi-step Markov problem with delayed 
rewards in which the system represents an “animat” [13], or organism, searching for 
food on a 30 by 15 grid. The Woods-2 environment is composed of five possible 
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location types (encoded as three bit binary strings): empty space through which the 
animat may move, two types of “rock” that block movement, and two types of food 
which garner a reward when occupied by the animat. The grid contains a repeating 
pattern of 3 by 3 blocks which are separated by two rows of empty space and the grid 
“wraps around” (e.g., moving off the edge of the grid places the animat on the oppo-
site edge of the grid), thereby creating a continuous environment.  

The system input is a 24-bit binary string representing the eight space types sur-
rounding the location currently occupied by the animat (i.e., the animat’s “sensed” 
surroundings). The output of the system is a three-bit binary string representing in 
which of the eight possible directions the animat attempts to move in response to its 
currently sensed surroundings. At the start of each episode, the types of food and rock 
in each block are randomly selected but the locations remain constant. This is done to 
better test the generalization abilities of the systems. 

For Woods-2, performance is measured as a moving average of the number of steps 
required for the animat to reach food on the last 50 exploitation episodes. A perform-
ance level of 1.7 steps on average is the optimal solution for Woods-2 as no popula-
tion of rules can do better [10,15]. 

As with the 6-Mux problem, the GA trigger threshold was selected for XCS in 
Woods-2 in order to cause the system to invoke the GA approximately the same num-
ber of times per run as MXCS and EXCS. Therefore, values of θga=500 and θga=1000 
were used for XCS at N=80 and N=40 respectively; while a value of θga=25 was used 
for MXCS and EXCS. As with the 6-Mux experiments, a variety of threshold values 
were evaluated and not found to significantly alter the performance of XCS at these 
population sizes.  

One further change was made to the implementation of the Woods-2 problem in 
order to allow a comparison of systems developing complete and partial maps. The 
exploration phase of the Woods-2 problem involves placing the animat at a random 
location and ending the exploration once the random selection of actions causes the 
animat to move onto a food space (and thus garner a reward) or when the maximum 
number of steps have been taken. However, it was found that a system developing an 
incomplete map (i.e., EXCS) will tend to take far fewer steps on average during explo-
ration as the majority of actions present will direct the animat towards food. This 
greatly reduces the number of steps taken during exploration and thus reduces the 
amount of “learning” taking place during each exploration episode. 

In an attempt to level the playing field, the exploration episodes of the Woods-2 
problems reported in this work utilize a complete-exploration technique. Under com-
plete-exploration the animat is placed in a new random location after each update of 
the prior action set or when food is reached. This continues until the maximum num-
ber of steps have been taken, thereby ensuring that each system takes the same number 
of exploration steps per run. Note that this technique is not required for the system to 
learn, it is used to allow a direct comparison between the two types of systems. 

Performance. Figure 3 shows the performance of the three systems in the Woods-2 
problem at two size-constrained configurations of N=80 and N=40 (note the logarith-
mic vertical axis). As shown, the size constraint causes XCS to be unsuccessful at 
either population size, actually performing worse than would be expected from a ran-
dom walk. MXCS achieves an average performance level of 1.94 steps by the end of 
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the run with N=80 and 3.83 steps with N=40. EXCS reaches average performance 
levels of 1.74 steps and 1.84 steps for N=80 and N=40 respectively. 
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Fig. 3. Woods2 Performance of: XCS with N=80 (X1) and N=40 (X2), MXCS with N=80 (M1) 
and N=40 (M2), EXCS with N=80 (E1) and N=40 (E2). Curves are averages of 100 runs 

7 Conclusions and Future Directions 

This paper has attempted to broaden the range of applications to which the XCS 
framework can be applied by introducing modifications that may help XCS to perform 
in size-constrained systems. Though the solutions may take longer to reach, it makes 
sense to investigate alternatives that allow the system’s requirements to be shifted 
from physical resources (i.e., population size) to system iterations as the physical 
resources may be limited by forces out of the implementers control. 

As was demonstrated, the first modified system, MXCS, was able to outperform 
XCS in small size-constrained configurations by, in essence, tuning the system’s algo-
rithms to make more cautious use of the limited resources available. The second sys-
tem introduced, EXCS, was shown to outperform both XCS and MXCS by taking 
advantage of the lower resource requirements of a partial map. Though a system de-
veloping an incomplete map such as EXCS may not be suitable for many problems, 
the advantages in terms of reduced resource requirements and potentially shorter time-
to-solution make it appealing for those problems that allow an incomplete map. 

There are a variety or areas related to this work that could be of interest for future 
investigation. First, a systematic evaluation of each modification is called for. Also, a 
more thorough investigation into the resource requirements of XCS and the relation-
ship between population size and the ability of the system to generalize is called for. 
Furthermore, a comparison of the systems presented here, as well as others (such as 
Kovacs’ SBXCS [9,10] and Lanzi’s XCSS [11]), in a wider range of problems and 
varying size-constraint levels seems to be in order. Lastly, a comparison of these sys-
tems in terms of time-to-solution for a variety of problems and configurations may 
help to make an argument for the use of smaller populations, as the computational cost 
of an increased population size will at some point outweigh the benefit. 
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