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Abstract. A new framework to formulate and quantify the epistasis of
a problem is proposed. It is based on Shannon’s information theory. With
the framework, we suggest three epistasis-related measures: gene signifi-
cance, gene epistasis, and problem epistasis. The measures are believed
to be helpful to investigate both the individual epistasis of a gene group
and the overall epistasis that a problem has. The experimental results
on various well-known problems support it.

1 Introduction

In the context of genetic algorithms, the difficulty of an optimization problem
is explained in various aspects. The aspects are categorized into deception [1],
multimodality [2], noise [3], epistasis [4,5], and so on. Among them, the epistasis
is observed in most GA-hard problems. In biology, we refer to the suppression of
gene expression by one or more other genes as epistasis. But, in the community of
evolutionary algorithms, the term has a wider meaning; it means the interaction
between genes.

In addition to the concepts to explain the problem difficulty, various measures
quantifying the difficulty have been proposed recently. The epistasis variance,
suggested by Davidor [5], is a measure quantifying the epistasis of a problem.
He interpreted the epistasis as the nonlinearity embedded in the fitness land-
scape of the problem. The measure was explained more formally by Reeves and
Wright [6] from the viewpoint of experimental design. The measures are, how-
ever, somewhat “macroscopic,” i.e., they concern the epistasis merely as a factor
of GA-hardness of a problem. In fact, the epistasis of a problem consists of many
individual epistases between small groups of genes. This idea already affected
various branches of evolutionary algorithms such as probabilistic model-building
genetic algorithms (PMBGAs) [7,8], also called estimation-of-distribution algo-
rithms (EDAs), and topological linkage-based genetic algorithms (TLBGAs) [9].
The epistases are estimated algorithmically or heuristically in the algorithms.

In this paper, we propose new algorithm-independent “microscopic” measures
of epistases. We suggest a new framework for the formulation and quantification
of the epistases. The framework is based on Shannon’s information theory [10,
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11]. We propose three measures: gene significance, gene epistasis, and problem
epistasis. They are helpful to investigate both the individual epistasis of a gene
group and the overall epistasis that a problem has.

The rest of this paper is organized as follows. The basic concepts of Shannon’s
entropy are introduced in Sect. 2. We establish a probability model and define
new epistasis measures in Sect. 3. We provide the results of experiments on
various well-known problems in Sect. 4. Finally, the conclusions are given in
Sect. 5.

2 Shannon’s Entropy

Shannon’s information theory [10,11] provides manners to quantify and formu-
late the properties of random variables. According to the theory, the amount
of information contained in a message notifying an event is defined to be the
number of digits being required to describe the event. That is, the amount of
information contained in a message notifying an event of probability p is defined
to be log 1

p . The log is to the base 2 and the value is measured in bits. The lower
the probability of the event is, the larger amount of information the message
contains. The average amount of information contained in events is the amount
of uncertainty of the random variable on the events. Thus, the uncertainty of a
random variable is defined as

H(X) = −
∑

x∈X

p(x) log p(x) (1)

where X and p(x) are the alphabet and the probability mass function (pmf), re-
spectively. The quantity is called the entropy of X. It means the average number
of bits being required to describe a random variable. The convention 0 log 0 = 0
is used in the equation, which is easily justified by continuity since x log x → 0
as x → 0. Entropy is always nonnegative. Similarly, the joint entropy of two
random variables is defined as

H(X, Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(x, y) (2)

where X and Y are the alphabets of random variables X and Y , respectively,
and p(x, y) is the joint pmf of the random variables. The conditional entropy of
X given Y is defined as

H(X|Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(x|y). (3)

It means the average uncertainty of X when the value of Y is known. The
conditioning reduces entropy, i.e., H(X|Y ) ≤ H(X). The average amount of
uncertainty of X reduced by knowing the value of Y is the amount of information
about X contained in Y . The quantity is called mutual information between X
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H(X ) H(Y )

H(X, Y )

H(X | Y ) I(X ; Y ) H(Y | X )

Fig. 1. Relationship between entropy and mutual information

and Y and is formally written as

I(X; Y ) = H(X) − H(X|Y ) (4)

=
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (5)

Mutual information is symmetric and nonnegative. Two random variables are
mutually independent if and only if the mutual information between them is
zero. The Equation (4) can be rewritten as

I(X; Y ) = H(X) + H(Y ) − H(X, Y ). (6)

It is deduced from the equation that the random variables are independent if
and only if the joint entropy of them is equal to the summation of the two
marginal entropies. The relationship between entropy and mutual information is
illustrated in Fig. 1. Table 1 shows examples of joint random variables. Table 1(a)
is an example of mutually independent random variables and Table 1(b) is an
example of mutually dependent random variables.

Table 1. Example joint pmf’s of two pairs of random variables whose alphabets
X and Y are {0, 1}. (a) Two mutually independent random variables. H(X) = 1,
H(Y ) = 0.81, H(X, Y ) = 1.81, and I(X; Y ) = 0. (b) Two mutually dependent random
variables. H(X) = 1, H(Y ) = 0.81, H(X, Y ) = 1.75, and I(X; Y ) = 0.06

(a)

X Y = 0 Y = 1
0 1/8 3/8 1/2
1 1/8 3/8 1/2

1/4 3/4

(b)

X Y = 0 Y = 1
0 1/16 7/16 1/2
1 3/16 5/16 1/2

1/4 3/4
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3 Probability Model and Epistasis Measures

3.1 Probability Model

Assume that a problem is encoded into n genes, and let the fitness function of
the problem be f : U → R where U is the set of all feasible1 solutions, called
universe of the problem. When we do random sampling on U , the probability that
a feasible solution (x1, x2, . . . , xn) will be chosen, is 1/|U|. By the probability
model, random variables for the genes and the fitness are defined. Let the random
variable for gene i be Xi and the random variable for the fitness be Y , and the
set of allele values of gene i and the set of all possible fitness values be Ai and
F , respectively, then the probability mass function is defined as

p(x1, x2, . . . , xn, y) =






1/|U| if (x1, x2, . . . , xn) ∈ U
and y = f(x1, x2, . . . , xn)

0 otherwise
(7)

for xi ∈ Ai, i ∈ {1, 2, . . . , n} and y ∈ F . It is practical to use a set of sampled
solutions in the Equation (7) instead of the universe U for large-sized problems
because of the spatial or computational limitations. But, in the case, the size of
the set must be not too small for getting results of low levels of distortion.

3.2 Epistasis Measures

Three epistasis-related measures are proposed in this section. They are based
on the probability model described in Sect. 3.1. They quantify gene significance,
gene epistasis, and problem epistasis, respectively.

The significance of a gene i is defined to be the amount of its contribution
to the fitness. It could be understood as the amount of information contained in
Xi about Y , i.e., I(Xi; Y ). Since the minimum and the maximum of the mutual
information are 0 and H(Y ), respectively, a normalization could be done by
dividing I(Xi; Y ) by H(Y ). As a result, the significance ξi of a gene i is defined
as

ξi =
I(Xi; Y )
H(Y )

. (8)

It ranges from 0 to 1; if the value is zero, the gene has no contribution to the
fitness and if the value is one, the gene wholly determines the fitness value.

The epistasis (often referred to as interaction) between genes means the de-
pendence of a gene’s contribution to the fitness upon the value of other genes.
The contribution of gene i and gene j to the fitness are quantified as I(Xi; Y )
and I(Xj ; Y ), respectively. And the contribution of the gene pair (i, j) to the
fitness is quantified as I(Xi, Xj ; Y ). Therefore, the epistasis between the two
genes could be written as I(Xi, Xj ; Y ) − I(Xi; Y ) − I(Xj ; Y ). A normalization
1 A solution is feasible if the fitness function is defined on it.
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iH(X  )
H(X  )j

H(Y )

| |I(X  , X  ; Y) − I(X  ; Y) − I(X  ; Y)i j ji

Fig. 2. An illustration of the pairwise epistasis

could be done by dividing the quantity by I(Xi, Xj ; Y ). As a result, the gene
epistasis εij between gene i and gene j is defined as

εij =





1 − I(Xi; Y ) + I(Xj ; Y )

I(Xi, Xj ; Y )
if I(Xi, Xj ; Y ) �= 0

0 otherwise.
(9)

Since the minimum and the maximum of the fraction in the Equation (9) are 0
and 2, respectively, the epistasis ranges from −1 to 1. It has a positive value if
I(Xi, Xj ; Y ) > I(Xi; Y ) + I(Xj ; Y ) and it has a negative value otherwise. The
former case means that the genes interact constructively with each other, and
the latter case means that they interact destructively with each other. We call
the epistasis of the former case positive gene epistasis, and that of the latter
case negative gene epistasis. If the two genes are mutually independent, the gene
epistasis is zero. Figure 2 shows an illustration of the above definition.

The mean absolute of the gene epistases of all gene pairs could be used as a
measure of the epistasis of a problem, i.e., the problem epistasis η is defined as

η =
1

n(n − 1)

n∑

i=1

∑

j<i

|εij |. (10)

Since each εij ranges from −1 to 1, η ranges from 0 to 1. The larger value η a
problem has, the more epistatic the problem is.

3.3 Fitness Discretization

In general, the fitness function of a problem is defined on a continuous domain,
while each gene has discrete allele values in many cases. So, the fitness value
needs to be discretized to apply the measures described in Sect. 3.2. The most
simple methods are equal-width discretization and equal-frequency discretization
[12]. In the equal-width discretization, the whole range is divided into k intervals
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of equal widths, while the whole range is divided into k intervals that include
the same number of samples in the equal-frequency discretization. We use equal-
frequency discretization with k = 10 in Sects. 4.3 and 4.4. Ten is the most widely
used number of intervals.

3.4 An Example

Table 2 shows two example fitness functions. The function fpos has four feasible
solutions, while fneg has only three feasible solutions. We can compute the values
of the measures, proposed in Sect. 3.2, of the example functions as follows. First,
we make a joint pmf table for each function as Tables 3a–b. Then, we apply the
equations in Sect. 2 to each of the tables to compute the entropies and mutual
informations. Finally, we use the Equations (8), (9), and (10) to compute the
gene significance, gene epistasis, and problem epistasis, respectively. Table 4
shows the intermediate values and the resultant measure values. We can see
that the two genes of fpos have positive gene epistasis, while the two genes of
fneg have negative gene epistasis. The table shows that the gene 1 of fneg is
more significant than gene 2, and the function fneg is more epistatic than fpos.

Table 2. Two example functions fpos and fneg

x1 x2 fpos fneg

0 0 0 0
0 1 0 undefined
1 0 0 1
1 1 1 1

Table 3. Joint pmf’s of the example functions

(a) Joint pmf of fpos.

X1 X2 Y = 0 Y = 1
0 0 1/4 0 1/4
0 1 1/4 0 1/4
1 0 1/4 0 1/4
1 1 0 1/4 1/4

3/4 1/4

(b) Joint pmf of fneg.

X1 X2 Y = 0 Y = 1
0 0 1/3 0 1/3
0 1 0 0 0
1 0 0 1/3 1/3
1 1 0 1/3 1/3

1/3 2/3

Table 4. The calculation of the measures for the example functions fpos and fneg

H(Y ) I(X1; Y ) I(X2; Y ) I(X1, X2; Y ) ξ1 ξ2 ε12 η

fpos 0.811 0.311 0.311 0.811 0.384 0.384 0.233 0.233
fneg 0.918 0.918 0.252 0.918 1.000 0.274 −0.274 0.274



New Entropy-Based Measures of Gene Significance and Epistasis 1351

Table 5. Davidor’s four example functions f1, f2, f3, and f4

x1 x2 x3 f1 f2 f3 f4

0 0 0 0 0 0.0 7
0 0 1 1 0 0.5 5
0 1 0 2 0 1.0 5
0 1 1 3 0 1.5 0
1 0 0 4 0 2.0 3
1 0 1 5 0 2.5 0
1 1 0 6 0 3.0 0
1 1 1 7 28 17.5 8

Table 6. The gene significance ξi, gene epistasis εij , and problem epistasis η of
Davidor’s four example functions f1, f2, f3, and f4

ξ1 ξ2 ξ3 ε12 ε13 ε23 η σ2
ε

f1 0.333 0.333 0.333 0.000 0.000 0.000 0.000 0
f2 0.254 0.254 0.254 0.060 0.060 0.060 0.060 49
f3 0.333 0.333 0.333 0.000 0.000 0.000 0.000 12.25
f4 0.304 0.188 0.188 0.082 0.082 0.298 0.154 8.57

4 Experimental Results

4.1 Davidor’s Examples

Davidor tested his epistasis variance on four example functions as shown in
Table 5. They are a linear function (f1), a delta function (f2), a mixture of
the linear function and delta function (f3 = f1+f2

2 ), and a minimal deceptive
function (f4). Table 6 shows the gene significance ξi, gene epistasis εij , and
problem epistasis η of each example function. The epistasis variance σ2

ε in the
final column was quoted from the Davidor’s paper [5] for comparison. The results
are somewhat different. The problem epistasis and the epistasis variance of f1
are zero in common. But, the epistasis variance of f3 is not zero, while the
problem epistasis of the function is zero. At the same time, the most problem
epistatic function among them is f4, while the function with the largest epistasis
variance is f2. The difference comes mainly from the reasons in the following.
The epistasis variance treats the fitness as a scalar quantity. But, the proposed
measures treat the fitness as a categorical index, i.e., the proposed measures do
not individually concern the magnitude of the fitness. The proposed measures
only concern whether the fitness values of solutions are the same or not.

4.2 Royal Road Function

Royal Road function is a function proposed by Forrest and Mitchell [13] to
investigate precisely and quantitatively how schema processing actually takes
place during the typical evolution of a genetic algorithm. To do so, the function
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was designed to have obvious building blocks and an optimal solution. Royal
Road function is defined as

f(x1, x2, . . . , xn) =
∑

i

ciδi(xi, x2, . . . , xn) (11)

where ci is a predefined coefficient corresponding to a schema si, and δi :
{0, 1}n → {0, 1} is a function that returns 1 if the solution contains the schema
si, and returns 0 otherwise. Generally, the coefficient ci is defined as the order of
schema si. Table 7 shows the two Royal Road functions used in our experiments.
The function R1 has four building blocks of order 2, while R2 has the building
blocks of R1 and two more building blocks of order 4. Figures 3a–b shows the
illustrations of the gene epistases of R1 and R2, respectively. We can see that the
genes of the building blocks have relatively strong gene epistasis with each other.
The figure shows that the gene epistases between the genes in order-2 building
blocks are larger than those of order-4 building blocks. The problem epistasis η
of R1 and R2 were 0.126 and 0.236, respectively. It means that R2 has stronger
problem epistasis than R1.

4.3 NK-Landscape

The NK-landscape model is a model proposed by Kauffman [14] to define a
family of fitness functions that have various dimensions of search space and
degrees of epistasis (see also [15,16]). The functions are tuned by two parameters:

Table 7. Two Royal Road functions

(a) R1

Schema Coefficient
s1 = 1 1 ∗ ∗ ∗ ∗ ∗ ∗ c1 = 2
s2 = ∗ ∗ 1 1 ∗ ∗ ∗ ∗ c2 = 2
s3 = ∗ ∗ ∗ ∗ 1 1 ∗ ∗ c3 = 2
s4 = ∗ ∗ ∗ ∗ ∗ ∗ 1 1 c4 = 2

sopt = 1 1 1 1 1 1 1 1

(b) R2

Schema Coefficient
s1 = 1 1 ∗ ∗ ∗ ∗ ∗ ∗ c1 = 2
s2 = ∗ ∗ 1 1 ∗ ∗ ∗ ∗ c2 = 2
s3 = ∗ ∗ ∗ ∗ 1 1 ∗ ∗ c3 = 2
s4 = ∗ ∗ ∗ ∗ ∗ ∗ 1 1 c4 = 2
s5 = 1 1 1 1 ∗ ∗ ∗ ∗ c5 = 4
s6 = ∗ ∗ ∗ ∗ 1 1 1 1 c6 = 4

sopt = 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8

ε = 0.424 ε = 0.424

ε = 0.076

(a) R1

87654321

ε = 0.424 ε = 0.424

ε = 0.299 ε = 0.158

(b) R2

Fig. 3. Gene epistasis εij of Royal Road functions
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Table 8. Gene epistasis εij of NK-landscape (N = 12)

Co-Contribution Frequency
K 0 1 2 3 4 5 6 7 8 9 10 11 12
2 0.072 0.206 0.249
3 0.092 0.196 0.242 0.254
4 0.112 0.186 0.228 0.263 0.262
5 0.136 0.193 0.233 0.257 0.271 0.282 0.303
6 0.231 0.249 0.269 0.289 0.305 0.307 0.310
7 0.260 0.281 0.287 0.300 0.305 0.311 0.325
8 0.295 0.305 0.309 0.311 0.317 0.321 0.327 0.317
9 0.312 0.320 0.320 0.324 0.330 0.329 0.330

10 0.315 0.337 0.328 0.334 0.338 0.339
11 0.334

N and K. The parameters N and K determines the dimension of the problem
space and the degree of epistasis between the genes constituting a chromosome,
respectively. The fitness f of a solution (x1, x2, . . . , xN ) is defined as

f(x1, x2, . . . , xN ) =
1
N

N∑

i=1

fi(xi, xji1 , xji2 , . . . , xjiK
) (12)

where the fitness contribution fi depends on the value of gene i and the values
of K other genes ji1, ji2, . . . , jiK . The function fi : {0, 1}K+1 → R assigns a
random number, distributed uniformly between 0 and 1, to each of its 2K+1

inputs. The values for ji1, ji2, . . . , jiK are chosen from {1, 2, . . . , N} at random.
The gene values xi, xji1 , xji2 , . . . , xjiK

contribute together to the fitness con-
tribution fi. We define the co-contribution frequency of gene i and j as the
number of cases that the gene values xi and xj contribute together to the fit-
ness f . Intuitively, we can say that two genes are strongly correlated if the
co-contribution frequency of the genes is high.

The gene epistases of gene pairs of NK-landscapes were listed along with
their co-contribution frequencies in Table 8. We discretized the fitness into 10
intervals by the equal-frequency discretization method in computing the mea-
sures. For each K, 200 independently generated functions were used for statistical
stability. In the table, the (i, j) entry represents the average gene epistasis of the
gene pairs of the NK-landscapes of K = i, that co-contribute j times. We can
see that the gene epistasis increases as the co-contribution frequency increases
for small K’s, but it tends to converge for larger K’s. Figure 4 shows the problem
epistases of the NK-landscapes for various K’s. We can see that the problem
epistasis increases as the K increases. Both of the results support our intuitive
predictions.
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0
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Fig. 4. Problem epistasis η of NK-landscapes (N = 12)

4.4 Traveling Salesman Problem

Given n cities, the traveling salesman problem (TSP) is the problem of finding
a shortest Hamiltonian cycle visiting the cities. TSP is a well-known NP-hard
problem [17]. It is one of the most popular optimization problems and has served
as an initial proving ground for new problem solving techniques for decades.

We apply the locus-based encoding to the problem as in [18]; one gene is allo-
cated for every city and the gene value represents the index of its next city in the
Hamiltonian cycle. By the encoding, the fitness f of a solution (x1, x2, . . . , xn)
that represents a Hamiltonian cycle is written as

f(x1, x2, . . . , xn) = Cmax −
n∑

i=1

dixi (13)

where dpq is the distance from city p to city q and Cmax is the cycle length
of the worst solution. The subtraction in the equation forces the fitness to be
nonnegative and the problem becomes a maximization problem. It is notable
that the absolute value of Cmax does not affect the epistasis measures when
the equal-frequency discretization is used. We computed the problem epistasis
η on TSP and compared it with a problem difficulty measure, fitness distance
correlation.

The fitness distance correlation (FDC) is a measure of problem difficulty
proposed by Jones and Forrest [19]. FDC is defined to be the correlation coeffi-
cient of the fitness and the distance to the nearest global optimum of sampled
solutions. Thus, it ranges from −1 to 1. As the value approaches −1, a problem
is believed to become easier.

When a genetic algorithm is hybridized with a local optimization algorithm,
what the algorithm can see are only local optima. Thus, it is valuable to examine
the space of local optima. For each problem instance, the solution set used for
the computation of FDC and problem epistasis, was chosen as follows. First,
we generate ten thousand solutions at random and apply a local optimization
algorithm to them. Then, we discard the duplicated copies from the resultant
solutions. We used 2-Opt [20] as the local optimization algorithm because it is
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Fig. 5. Fitness-distance correlation (FDC) vs. problem epistasis of TSP

one of the most simple and basic heuristics. The fitness was discretized into 10
intervals by the equal-frequency discretization method as in the case of NK-
landscape. As the distance measure, we used Hamming distance that is defined
to be the number of genes with different values. Figure 5 shows the relationship
between the problem epistasis and the FDC for 44 instances taken from TSPLIB
[21]. They are all instances available whose numbers of cities lie inbetween 100
and 700. The figure shows that the two measures are strongly correlated. It
means that the problem epistasis works well as the problem difficulty measure.

5 Conclusions

We provided a new framework to formulate and quantify the epistasis of a prob-
lem based on Shannon’s entropy. With the framework, three measures were
proposed: gene significance, gene epistasis, and problem epistasis. They are for
choosing significant genes, detecting epistatic gene pairs, and quantifying the
epistasis of a problem as a difficulty measure, respectively. They are different
from Davidor’s epistasis variance in the way of treating the fitness. They treat
a fitness value as a categorical index, while the epistasis variance treats it as a
scalar quantity. The experimental results on various well-known problems, such
as Royal Road function, NK-landscape, and traveling salesman problem, sup-
port their usefulness and appropriateness. Future studies include extensions of
the framework and applications of the measures.
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