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Abstract: In the future, we propose that there will be largely self-sufficient robot colonies 
operating on distant planets and in harsh environments here on earth.  A highly desirable 
quality of such a colony would be the capability of the robots to repair each other.  Towards 
the goal of autonomous repair, we designed a robot that can replace the modules composing 
a similar robot.  In this paper we highlight a visual docking system for the repairable robot 
design that allows the robots to autonomously replace their teammate’s modules. The 
primary contribution of this work lies in the application of known techniques to the more 
constraining platforms of very small robots. This forces the use of very simple hardware and 
algorithms that perform robustly.   The results obtained consist of initial configurations from 
which the robots could successfully complete the docking operation and the average time 
required to dock. 

1. Introduction 

There are several applications for robots capable of cooperative repair.  Our main 
vision is of a colony of robots on Mars (or another planet) preparing a station for 
human habitation (Figure ).  NASA’s technology plan [12] lists self-diagnosing and 
self-repairing systems as one of the technologies necessary for self-sustained long 
duration human operations.  Such a colony would need to operate without outside 
assistance for extended periods of time, although there is the possibility for some 
teleoperation of the robots if humans are present.  Other applications include 
operation in any kind of harsh environment where human intervention is either 
costly or dangerous.  A team with cooperative repair capabilities would be able to 
operate longer and more efficiently than a comparable team without such 
capabilities. 

Repairable robots are also useful in non-automated repair tasks.  If a robot can 
be repaired by another robot, then it is likely that the task will be trivial for a human 
technician.  This can lead to smaller downtimes in factory settings as well as 
decreasing the maintenance cost of robotic systems in general. 



 

Figure 1. Possible tasks for a self-sufficient team of robots 

 
The concept of modular redundancy leading to hardware availability is an 

extremely old concept [5].  Cooperative repair uses modular redundancy between 
robots so that one need not replicate individual components on a given robot to 
achieve dependability.  The components of failed teammates provide the modular 
redundancy we require for a dependable robot team.  In previous work [16], we have 
designed a small mobile robot that has a standard skid-steered base, and yet also has 
the capacity to replace modules on teammates as well as have its own modules be 
replaced.  This type of module replacement is a key step towards cooperative repair.  
In our implementation, the robots also have the ability to perform cooperative 
reconfiguration, by which we mean that different module types can be placed on the 
robots in a wide variety of configurations.   

The closest related work to the concept of systems capable of cooperative 
repair/reconfiguration is that of metamorphic or reconfigurable robots.  The primary 
difficulties with these systems are due to the exponential increase in planning 
complexity for a large set of modules [6].  Some of these systems have the capability 
of self-repair, in that they can expel failed modules and continue to function [7][8].  
The key difference is that the above systems must carry the redundant modules with 
them even if they don’t serve any purpose. These modules can then be used to 
perform self-repair when a module breaks.  In our design, the redundancy comes 
from the other teammates.  All modules are in use until that robot fails.  These 
modules can then be used to repair the next robot that fails.  Although reconfigurable 
robots may one day be the solution to many problems, they will be useless in 
practical situations until an effective means to power them has been developed.  All 
of the reconfigurable and metamorphic robots built to date either use tethered power 
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or quickly drain any battery-powered supply due to the large number of actuators 
required. 

It is generally the case that systems made for a specific task are usually 
cheaper and more efficient.  However, in applications where the exact task and 
environment is not known before hand, a team of robots with repair and 
reconfiguration capabilities will yield a more versatile solution.  The advantages of 
such a system are similar to those promised by metamorphic robots [6]: Versatility; 
in that robots can be autonomously reconfigured to optimally perform a task given a 
limited set of functional modules.  Reliability; in that as the number of modules 
increases in any system, be it a team of robots or one very expensive robot with a 
large amount of redundancy, the probability of at least one component failing as the 
number of components increases goes to one. Low Expense; were such a team to be 
built, a large number of identical modules would lead to decreased production cost 
per module.  The design of such a system also avoids some of the main difficulties 
with metamorphic systems in that planning complexity is not directly proportional 
with the number of modules.  Placing the modules on separate robots gives a natural 
hierarchy that simplifies control and repair.  Multi-robot research [6][9][10] can then 
be applied to the control of the team as a whole.  Perhaps the most appealing feature 
of this type of system is that redundant components are actually in use prior to a 
failure.  Therefore, no components are sitting idle waiting to take over when another 
component fails and no productivity or expense is wasted carrying redundant 
components that are never used. 

Repair in dependability and reliability literature is known as fault removal 
[1][2].  In order for fault removal to occur in a self-sufficient robot colony, the 
robots must first determine that there is some fault present.  Once a fault is known to 
exist, one must then determine the location and nature of such a fault. Action is then 
taken to remove the fault.  Of these three steps: verification, diagnosis, and 
correction, we have concentrated on the correction aspect. In our case, correction 
corresponds to replacing a faulty module in a modular design.  In order to correct 
any fault in this case, we must replace the faulty module.  To replace the faulty 
module, we must be able to dock with the failed robot and replace the module.  This 
paper concentrates on the docking system that was designed for this purpose. 

There is a relatively small amount of literature that is directly applicable to 
docking mobile robots. Most of the literature about pose-estimation and navigation 
based on landmarks is highly relevant to docking [20][21].  The main difference 
between this type of work and the systems presented here has to do with complexity.  
The typical task in such work is to accurately determine the robot’s cartesian 
location.  This work could be used to perform docking tasks, but tends to be overly 
complex for a simple docking task and often does not yield the required accuracy.  
Other docking tasks specifically designed for mobile robots tend to be highly task-
specific [22], or use complex sensors and algorithms unsuitable for use on small 
robots [23]. 

2. Task Description 
In [4] we developed a localization system based on ultrasonic trilateration. The 
system could position a robot reliably within one or two centimeters.  Thus we 
required a docking system to dock from a start position that was anywhere within 



that area.  In the results section, we describe the initial positions from which the 
robot can begin the docking procedure and successfully complete the docking task.  
These initial positions consist of an X and Y offset from the goal position.  We will 
henceforward refer to this as the initial configuration of the robot. 

In this case, the task definition was very precise.  This task was to dock a 
forklift robot (the repair robot) with a second (stationary) robot and remove a 
module.  The sensor used to accomplish this was a black and white wireless camera.  
The robot was required to fully insert the forklift pins into the forklift receptacle on 
the other robot.  Contact with the second robot caused a bump switch to be triggered, 
indicating that docking was complete. The two robots are shown in Figure .  In this 
task, the visual target was identified and tracked autonomously in order to dock the 
robot. 

 

Figure 2. Repair robot and the robot to be repaired, including the visual target 

The repair robot was placed in an arbitrary initial configuration and was 
required to complete the docking procedure, including the removal of the module, or 
it should indicate to the user that it could not complete the task.  Success in this task 
occurred when the robot successfully removes the module on the second robot. 

3. Hardware and Algorithms 

3.1. Hardware Description 
The basic platform for the repairable and repair capable is discussed in detail in [16].  
To this platform we added a black-and-white wireless camera and a bump switch, as 
indicated in Figure .  The camera transmitted a 320x240 pixel video stream to a 
Pentium II 400MHz PC, which then digitized the image using a Matrox Meteor II 
capture card.  The PC performed the image processing and target tracking and then 
sent control commands to the robot to perform the docking task via an RF link.  
Most of the image processing was done using the Matrox imaging library. 

One of the key features of the forklift and the forklift receptacle was that they 
were designed to have approximately a 30 degree allowable error angle between the 
line formed by the forklift pin and the axis of the hole in which the pin was to be 



inserted.  This was partially achieved through rounding the pins of the forklift and 
shaping each of the two holes in the forklift receptacle as cones.  The other main 
feature that allowed the 30 degree error is the fact that the robot is skid-steered.  
Thus, if the pins were partially inserted into the receptacle and the robot pushes 
straight ahead, then the wheels would slip on the ground and allow the robot to 
center the pins in the receptacle. 

Although the image processing was done on the PC, our goal is to eventually 
perform all processing on the robot itself.  To this end, the image processing, 
machine vision algorithms, and robot control strategies were deliberately kept as 
simple as possible. 

3.2. Image processing and machine vision algorithms 
The location of the visual target in the image could be identified given only a single 
image.  The basic idea for this type of visual target came from [18].  In that example 
they used it to control a 5-degree of freedom manipulator. In order to determine the 
pixel coordinates of the target within the image, the following steps were performed: 

• Capture a single grayscale image 
• Perform histogram equalization on the image (equalization of the image 

intensity distribution) 
• Binarize the image using a constant threshold which is determined 

empirically 
• Find all 8-connected white regions (blobs) in the image and calculate the 

center of gravity of each region (i.e. the center of the region) 
• Find all 8-connected black regions (blobs) in the image and calculate their 

centers of gravity 
• Exclude all regions that are less than 30 pixels in size (30 pixels is the area 

the visual target occupies when it can barely be detected by this algorithm).  
This step eliminates noise in the image and reduces the processing required 
by the following steps 

• Exclude all black regions that do not have exactly one white hole inside 
them.  Since the target only has one white hole then all other regions are 
not of interest. 

• For all remaining black regions, compare their centers of gravity to the 
centers of gravities of the white regions 

• If a white center of gravity matches a black center of gravity to within 2 
pixels, then that is our visual target. The coordinates of the black region’s 
center of gravity give the center of the visual target.  The value of 2 pixels 
was determined empirically.  

The image processing routine returned the x and y location of the target in the 
image.  We only had one 1cm tall target in the image and it was tracked extremely 
reliably up to a distance of 50cm from the target.  At distances of greater than 50cm, 
the connected regions composing the target became too small to discriminate from 
the background.  For comparison, a human observer was unable to observe the 
connected regions in the image (shown on the screen) at approximately 70cm.  
Obviously, if we had a larger target or a higher resolution camera, the distance at 
which the target could be tracked would have been greater. 

3.3. Controlling the robot using the results from the machine vision system 
The control of the robot followed a simple state machine: 



• Acquire target state:  This is the initial state in which the robot begins the 
docking procedure.  Essentially, the robot turns counter-clockwise 
(clockwise would work equally as well) until the target is seen.  This allows 
the robot to start from an arbitrary orientation. After the target is acquired, 
the robot proceeds to the approach state 

• Approach state:  First we determine the position of the visual target in the 
image.  If the target is to the left of center, turn slightly to the left while 
moving forward.  If it is to the right of center, turn slightly to the right 
while moving forward.  Repeat until the target approaches the bottom of the 
image at which point we move to the centering state 

• Centering state:  In this state the robot turns left or right very slowly until 
the visual target is directly centered below the forklift pins and then 
proceeds to the insertion state 

• Insertion state:  The robot drives straight ahead until either the bump switch 
is triggered or a timeout occurs.  If the bump switch is triggered, the 
docking is complete and the forklift can be raised to remove the module. 
This is considered a successful completion of the docking task.  If a timeout 
occurs, the robot enters the retry state. 

• Retry state: The robot drives directly backwards until the visual target is 
within view or a timeout occurs.  If a timeout occurs during the retry state, 
then the docking procedure is considered a failure.  If the visual target is 
seen again, then we proceed to the approach state. If this is the third retry 
then the docking procedure has failed. 

There are several features to note about this state machine.  Firstly, the robot 
was only allowed to retry 3 times before the docking procedure is considered to have 
failed.  The justification here was that there is likely something blocking the forklift 
pins from entering the holes.  Not mentioned in the above state machine is the fact 
that each state has an associated timeout.  If the robot takes too long to perform any 
given state, the docking procedure is considered to have failed. 

Perhaps the weakest feature of this control algorithm was that it relied on the 
bump switch for confirmation of a successful dock.  Though we only checked the 
state of the bump switch in the Insertion state, it may have been possible for 
something to have accidentally triggered the switch.  The hardware actually 
supported a superior method for determining docking success though it was 
unimplemented in these experiments.  Just below the forklift pins on the repair 
robot, the white docking guide has connections for one power pin and four input 
pins.  When properly positioned on the failed robot, these four input pins generate a 
four-bit address for each module, thus we would know if we had successfully 
docked with the failed robot as well as exactly which module on the robot we had 
docked with.  This will be implemented in future work. 

4. Docking System Results 

Our primary concern was to determine the initial configurations from which the 
robot could successfully dock with and remove the module from the second robot 
The second robot is stationary at the goal position is at 0,0.  Note in Figure  that we 
do not show the initial orientation of the robot, as the acquire target state mentioned 
above will find the target if it is within the recognition range of the machine vision 
algorithm or it will timeout and indicate a failure. 



 

Repair Robot Docking Results
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Figure 3. Docking Results 

In Figure  we performed 31 trials to determine the initial configurations from 
which the repair robot could successfully dock with the failed robot.  Note that the 
area in which the robot succeeded in docking forms a cone-like shape.  Thus, if we 
could position the robot anywhere within this cone we could successfully dock with 
the failed robot and remove the module.  In the trials shown in Figure  we measured 
the average time of a successful docking procedure to be 80 seconds, and the 
average time to notify the user of a failed docking procedure to be 75 seconds.  From 
the furthest point that the robot could successfully dock without retries, the robot 
required 80 seconds if it performed no retries.  A retry on average took 45 seconds, 
and retries were only required if the robot was on the edge of the area in which a 
docking procedure could be successfully performed.  The system is quite robust; all 
the trials that were not on the border of the cone were successful. Considering that 
the robot operates for approximately one and a half to two hours on a single battery 
charge, the docking time was a minor portion of the operational time of the robot. 

5. Discussion 

5.1. Docking System Failure Modes 
The failure modes of this system were due almost entirely to the visual system and 
the machine vision algorithms being used.  Firstly, one should note that the camera 
was positioned high on the robot and looking towards the ground at an angle.  This 
configuration allowed us to use the y position of the target in the image as a rough 
estimation of the distance to the target.  The disadvantage was that we were unable 
to see the target at a distance of further than 40cm.  The only reason for placing the 



camera there (as opposed to mounting the camera lower on the chassis) was that we 
wanted to have the camera be a replaceable module. 

The binarization of the image was a large source of error.  Though a human 
could clearly distinguish the target in the image at 55 cm, the binarization caused the 
outlines of the target to become indistinguishable from the background and the 
remaining steps in the algorithm to fail.  There are several solutions to this. In [17], 
they used a self-similar pattern that could be easily recognized in the image.  This 
approach could also be used here, but is significantly more processing intensive than 
our approach.  Another approach would be to use a color camera and a target of a 
unique color as has been used in several other systems.  

5.2. Strengths and Weaknesses of the Docking System 

5.2.1. System advantages: 

Visual target tracking explicitly determines whether or not it was possible to see the 
target from the current position, thus we always knew if it was indeed possible to 
successfully dock from the starting position.  If we did not see the target then we 
could alert the user or a higher-level planner of the error.  If the target is lost during 
the docking procedure, the robot can undo previous steps to find the target and 
reattempt the docking procedure.  In many cases the robot being repaired will have 
lost power, if this is the case the visual system will still function correctly.  In 
general one cannot make the assumption that the robot to be repaired can assist in 
the repair procedure in any way. 

5.2.2. System disadvantages: 

The hardware required for the docking system is expensive compared to the cost of 
the robot: Wireless B/W Camera $250, Receiver $100, Capture Card $100-$600.  
The robot itself costs approximately $500, most of which is in the cost for the 
motors.  Though in this particular case we performed the vision processing off-
board, a more realistic scenario would be to have the vision processing done on-
board.  Vision is a computing-intensive application, and thus we would need a fair 
amount of processing power on the robot, which is difficult for a robot of this size. 

5.3. Docking Systems for Repairable Robots 
The above system was a second attempt at a docking system.  The first system used 
infrared light emitting diodes (LEDs) to perform the docking procedure.  This 
docking system was very inexpensive and computationally simple, but had several 
properties that were unacceptable in a docking system for cooperative repair.   In 
order to find a damaged robot, the damaged robot had to turn on two LEDs in order 
for the repair robot to dock with it.  Obviously, if the damaged robot does not have 
power, this is impossible.  As a general rule, one cannot assume that a robot in need 
of repair can assist in the repair procedure in any way.  Thus any docking system 
used in a repair procedure should be passive with respect to the damaged robot. 

For our specific class of repairable robots, where repair consists of replacing 
failed modules, the docking system should allow the repair robot to dock with any 
replaceable module.  Though not included in this system, the extension is simple.  
The addition of a visual bar code around the border of the visual target will allow us 
to have a visual target for every replaceable module.  A more general approach 
might be to have one or more reference markers on the robot from which the relative 
position of all the replaceable modules could be determined. 



Another crucial feature of docking systems for repair robots is that there must 
be a retry feature.  There are an infinite number of possible failures that may occur 
during the docking phase.  Many of these failures are only transient, and thus can be 
overcome if the docking procedure is repeated.  Also, if the retries fail, it should be 
possible to re-plan at a higher level.  In our case, this means using our ultrasonic 
localization system to move the robot to a configuration from which it can attempt 
the docking procedure again. 

6. Conclusion 

We have presented the concept of cooperative repair.  Cooperative repair requires 
three distinct steps: verification, diagnosis, and correction.  The docking system in 
conjunction with the mechanical design of the robot will allow us to complete the 
correction aspect of these three steps.  Our current goal is to integrate the docking 
system with the localization system developed in [4].  We must then further develop 
the system to be able to distinguish and dock with multiple modules and various 
teammates. 

The overall objective is to build a platform with which to develop the 
remaining two aspects required for cooperative repair, namely fault detection and 
fault diagnosis.  Once the platform is complete, we will have a real platform to test 
the algorithms and procedures being developed for fault detection and diagnosis. 
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