
Towards A Team of Robots with Repair
Capabilities: A Visual Docking System

Curt Bererton
Robotics Institute, Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
curt@cs.cmu.edu

Pradeep K. Khosla

Electrical and Computer Engineering, Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

pkk@ece.cmu.edu

Abstract: In the future, we propose that there will be largely self-sufficient robot colonies
operating on distant planets and in harsh environments here on earth. A highly desirable
quality of such a colony would be the capability of the robots to repair each other. Towards
the goal of autonomous repair, we designed a robot that can replace the modules composing
a similar robot. In this paper we highlight a visual docking system for the repairable robot
design that allows the robots to autonomously replace their teammate’s modules. The
primary contribution of this work lies in the application of known techniques to the more
constraining platforms of very small robots. This forces the use of very simple hardware and
algorithms that perform robustly. The results obtained consist of initial configurations from
which the robots could successfully complete the docking operation and the average time
required to dock.

1. Introduction

There are several applications for robots capable of cooperative repair. Our main
vision is of a colony of robots on Mars (or another planet) preparing a station for
human habitation (Figure). NASA’s technology plan [12] lists self-diagnosing and
self-repairing systems as one of the technologies necessary for self-sustained long
duration human operations. Such a colony would need to operate without outside
assistance for extended periods of time, although there is the possibility for some
teleoperation of the robots if humans are present. Other applications include
operation in any kind of harsh environment where human intervention is either
costly or dangerous. A team with cooperative repair capabilities would be able to
operate longer and more efficiently than a comparable team without such
capabilities.

Repairable robots are also useful in non-automated repair tasks. If a robot can
be repaired by another robot, then it is likely that the task will be trivial for a human
technician. This can lead to smaller downtimes in factory settings as well as
decreasing the maintenance cost of robotic systems in general.

Figure 1. Possible tasks for a self-sufficient team of robots

The concept of modular redundancy leading to hardware availability is an

extremely old concept [5]. Cooperative repair uses modular redundancy between
robots so that one need not replicate individual components on a given robot to
achieve dependability. The components of failed teammates provide the modular
redundancy we require for a dependable robot team. In previous work [16], we have
designed a small mobile robot that has a standard skid-steered base, and yet also has
the capacity to replace modules on teammates as well as have its own modules be
replaced. This type of module replacement is a key step towards cooperative repair.
In our implementation, the robots also have the ability to perform cooperative
reconfiguration, by which we mean that different module types can be placed on the
robots in a wide variety of configurations.

The closest related work to the concept of systems capable of cooperative
repair/reconfiguration is that of metamorphic or reconfigurable robots. The primary
difficulties with these systems are due to the exponential increase in planning
complexity for a large set of modules [6]. Some of these systems have the capability
of self-repair, in that they can expel failed modules and continue to function [7][8].
The key difference is that the above systems must carry the redundant modules with
them even if they don’t serve any purpose. These modules can then be used to
perform self-repair when a module breaks. In our design, the redundancy comes
from the other teammates. All modules are in use until that robot fails. These
modules can then be used to repair the next robot that fails. Although reconfigurable
robots may one day be the solution to many problems, they will be useless in
practical situations until an effective means to power them has been developed. All
of the reconfigurable and metamorphic robots built to date either use tethered power

Repairing the
base

The base constructing a
new robot

Two robots cooperatively
repairing another

or quickly drain any battery-powered supply due to the large number of actuators
required.

It is generally the case that systems made for a specific task are usually
cheaper and more efficient. However, in applications where the exact task and
environment is not known before hand, a team of robots with repair and
reconfiguration capabilities will yield a more versatile solution. The advantages of
such a system are similar to those promised by metamorphic robots [6]: Versatility;
in that robots can be autonomously reconfigured to optimally perform a task given a
limited set of functional modules. Reliability; in that as the number of modules
increases in any system, be it a team of robots or one very expensive robot with a
large amount of redundancy, the probability of at least one component failing as the
number of components increases goes to one. Low Expense; were such a team to be
built, a large number of identical modules would lead to decreased production cost
per module. The design of such a system also avoids some of the main difficulties
with metamorphic systems in that planning complexity is not directly proportional
with the number of modules. Placing the modules on separate robots gives a natural
hierarchy that simplifies control and repair. Multi-robot research [6][9][10] can then
be applied to the control of the team as a whole. Perhaps the most appealing feature
of this type of system is that redundant components are actually in use prior to a
failure. Therefore, no components are sitting idle waiting to take over when another
component fails and no productivity or expense is wasted carrying redundant
components that are never used.

Repair in dependability and reliability literature is known as fault removal
[1][2]. In order for fault removal to occur in a self-sufficient robot colony, the
robots must first determine that there is some fault present. Once a fault is known to
exist, one must then determine the location and nature of such a fault. Action is then
taken to remove the fault. Of these three steps: verification, diagnosis, and
correction, we have concentrated on the correction aspect. In our case, correction
corresponds to replacing a faulty module in a modular design. In order to correct
any fault in this case, we must replace the faulty module. To replace the faulty
module, we must be able to dock with the failed robot and replace the module. This
paper concentrates on the docking system that was designed for this purpose.

There is a relatively small amount of literature that is directly applicable to
docking mobile robots. Most of the literature about pose-estimation and navigation
based on landmarks is highly relevant to docking [20][21]. The main difference
between this type of work and the systems presented here has to do with complexity.
The typical task in such work is to accurately determine the robot’s cartesian
location. This work could be used to perform docking tasks, but tends to be overly
complex for a simple docking task and often does not yield the required accuracy.
Other docking tasks specifically designed for mobile robots tend to be highly task-
specific [22], or use complex sensors and algorithms unsuitable for use on small
robots [23].

2. Task Description
In [4] we developed a localization system based on ultrasonic trilateration. The
system could position a robot reliably within one or two centimeters. Thus we
required a docking system to dock from a start position that was anywhere within

that area. In the results section, we describe the initial positions from which the
robot can begin the docking procedure and successfully complete the docking task.
These initial positions consist of an X and Y offset from the goal position. We will
henceforward refer to this as the initial configuration of the robot.

In this case, the task definition was very precise. This task was to dock a
forklift robot (the repair robot) with a second (stationary) robot and remove a
module. The sensor used to accomplish this was a black and white wireless camera.
The robot was required to fully insert the forklift pins into the forklift receptacle on
the other robot. Contact with the second robot caused a bump switch to be triggered,
indicating that docking was complete. The two robots are shown in Figure . In this
task, the visual target was identified and tracked autonomously in order to dock the
robot.

Figure 2. Repair robot and the robot to be repaired, including the visual target

The repair robot was placed in an arbitrary initial configuration and was
required to complete the docking procedure, including the removal of the module, or
it should indicate to the user that it could not complete the task. Success in this task
occurred when the robot successfully removes the module on the second robot.

3. Hardware and Algorithms

3.1. Hardware Description
The basic platform for the repairable and repair capable is discussed in detail in [16].
To this platform we added a black-and-white wireless camera and a bump switch, as
indicated in Figure . The camera transmitted a 320x240 pixel video stream to a
Pentium II 400MHz PC, which then digitized the image using a Matrox Meteor II
capture card. The PC performed the image processing and target tracking and then
sent control commands to the robot to perform the docking task via an RF link.
Most of the image processing was done using the Matrox imaging library.

One of the key features of the forklift and the forklift receptacle was that they
were designed to have approximately a 30 degree allowable error angle between the
line formed by the forklift pin and the axis of the hole in which the pin was to be

inserted. This was partially achieved through rounding the pins of the forklift and
shaping each of the two holes in the forklift receptacle as cones. The other main
feature that allowed the 30 degree error is the fact that the robot is skid-steered.
Thus, if the pins were partially inserted into the receptacle and the robot pushes
straight ahead, then the wheels would slip on the ground and allow the robot to
center the pins in the receptacle.

Although the image processing was done on the PC, our goal is to eventually
perform all processing on the robot itself. To this end, the image processing,
machine vision algorithms, and robot control strategies were deliberately kept as
simple as possible.

3.2. Image processing and machine vision algorithms
The location of the visual target in the image could be identified given only a single
image. The basic idea for this type of visual target came from [18]. In that example
they used it to control a 5-degree of freedom manipulator. In order to determine the
pixel coordinates of the target within the image, the following steps were performed:

• Capture a single grayscale image
• Perform histogram equalization on the image (equalization of the image

intensity distribution)
• Binarize the image using a constant threshold which is determined

empirically
• Find all 8-connected white regions (blobs) in the image and calculate the

center of gravity of each region (i.e. the center of the region)
• Find all 8-connected black regions (blobs) in the image and calculate their

centers of gravity
• Exclude all regions that are less than 30 pixels in size (30 pixels is the area

the visual target occupies when it can barely be detected by this algorithm).
This step eliminates noise in the image and reduces the processing required
by the following steps

• Exclude all black regions that do not have exactly one white hole inside
them. Since the target only has one white hole then all other regions are
not of interest.

• For all remaining black regions, compare their centers of gravity to the
centers of gravities of the white regions

• If a white center of gravity matches a black center of gravity to within 2
pixels, then that is our visual target. The coordinates of the black region’s
center of gravity give the center of the visual target. The value of 2 pixels
was determined empirically.

The image processing routine returned the x and y location of the target in the
image. We only had one 1cm tall target in the image and it was tracked extremely
reliably up to a distance of 50cm from the target. At distances of greater than 50cm,
the connected regions composing the target became too small to discriminate from
the background. For comparison, a human observer was unable to observe the
connected regions in the image (shown on the screen) at approximately 70cm.
Obviously, if we had a larger target or a higher resolution camera, the distance at
which the target could be tracked would have been greater.

3.3. Controlling the robot using the results from the machine vision system
The control of the robot followed a simple state machine:

• Acquire target state: This is the initial state in which the robot begins the
docking procedure. Essentially, the robot turns counter-clockwise
(clockwise would work equally as well) until the target is seen. This allows
the robot to start from an arbitrary orientation. After the target is acquired,
the robot proceeds to the approach state

• Approach state: First we determine the position of the visual target in the
image. If the target is to the left of center, turn slightly to the left while
moving forward. If it is to the right of center, turn slightly to the right
while moving forward. Repeat until the target approaches the bottom of the
image at which point we move to the centering state

• Centering state: In this state the robot turns left or right very slowly until
the visual target is directly centered below the forklift pins and then
proceeds to the insertion state

• Insertion state: The robot drives straight ahead until either the bump switch
is triggered or a timeout occurs. If the bump switch is triggered, the
docking is complete and the forklift can be raised to remove the module.
This is considered a successful completion of the docking task. If a timeout
occurs, the robot enters the retry state.

• Retry state: The robot drives directly backwards until the visual target is
within view or a timeout occurs. If a timeout occurs during the retry state,
then the docking procedure is considered a failure. If the visual target is
seen again, then we proceed to the approach state. If this is the third retry
then the docking procedure has failed.

There are several features to note about this state machine. Firstly, the robot
was only allowed to retry 3 times before the docking procedure is considered to have
failed. The justification here was that there is likely something blocking the forklift
pins from entering the holes. Not mentioned in the above state machine is the fact
that each state has an associated timeout. If the robot takes too long to perform any
given state, the docking procedure is considered to have failed.

Perhaps the weakest feature of this control algorithm was that it relied on the
bump switch for confirmation of a successful dock. Though we only checked the
state of the bump switch in the Insertion state, it may have been possible for
something to have accidentally triggered the switch. The hardware actually
supported a superior method for determining docking success though it was
unimplemented in these experiments. Just below the forklift pins on the repair
robot, the white docking guide has connections for one power pin and four input
pins. When properly positioned on the failed robot, these four input pins generate a
four-bit address for each module, thus we would know if we had successfully
docked with the failed robot as well as exactly which module on the robot we had
docked with. This will be implemented in future work.

4. Docking System Results

Our primary concern was to determine the initial configurations from which the
robot could successfully dock with and remove the module from the second robot
The second robot is stationary at the goal position is at 0,0. Note in Figure that we
do not show the initial orientation of the robot, as the acquire target state mentioned
above will find the target if it is within the recognition range of the machine vision
algorithm or it will timeout and indicate a failure.

Repair Robot Docking Results

-25
-20
-15

-10
-5
0
5

10

15
20
25

0 10 20 30 40 50

X Distance to target in [cm]

Y
 o

ff
se

t
fr

o
m

 t
ar

g
et

 in
 [

cm
]

Successes

Failures

Figure 3. Docking Results

In Figure we performed 31 trials to determine the initial configurations from
which the repair robot could successfully dock with the failed robot. Note that the
area in which the robot succeeded in docking forms a cone-like shape. Thus, if we
could position the robot anywhere within this cone we could successfully dock with
the failed robot and remove the module. In the trials shown in Figure we measured
the average time of a successful docking procedure to be 80 seconds, and the
average time to notify the user of a failed docking procedure to be 75 seconds. From
the furthest point that the robot could successfully dock without retries, the robot
required 80 seconds if it performed no retries. A retry on average took 45 seconds,
and retries were only required if the robot was on the edge of the area in which a
docking procedure could be successfully performed. The system is quite robust; all
the trials that were not on the border of the cone were successful. Considering that
the robot operates for approximately one and a half to two hours on a single battery
charge, the docking time was a minor portion of the operational time of the robot.

5. Discussion

5.1. Docking System Failure Modes
The failure modes of this system were due almost entirely to the visual system and
the machine vision algorithms being used. Firstly, one should note that the camera
was positioned high on the robot and looking towards the ground at an angle. This
configuration allowed us to use the y position of the target in the image as a rough
estimation of the distance to the target. The disadvantage was that we were unable
to see the target at a distance of further than 40cm. The only reason for placing the

camera there (as opposed to mounting the camera lower on the chassis) was that we
wanted to have the camera be a replaceable module.

The binarization of the image was a large source of error. Though a human
could clearly distinguish the target in the image at 55 cm, the binarization caused the
outlines of the target to become indistinguishable from the background and the
remaining steps in the algorithm to fail. There are several solutions to this. In [17],
they used a self-similar pattern that could be easily recognized in the image. This
approach could also be used here, but is significantly more processing intensive than
our approach. Another approach would be to use a color camera and a target of a
unique color as has been used in several other systems.

5.2. Strengths and Weaknesses of the Docking System

5.2.1. System advantages:

Visual target tracking explicitly determines whether or not it was possible to see the
target from the current position, thus we always knew if it was indeed possible to
successfully dock from the starting position. If we did not see the target then we
could alert the user or a higher-level planner of the error. If the target is lost during
the docking procedure, the robot can undo previous steps to find the target and
reattempt the docking procedure. In many cases the robot being repaired will have
lost power, if this is the case the visual system will still function correctly. In
general one cannot make the assumption that the robot to be repaired can assist in
the repair procedure in any way.

5.2.2. System disadvantages:

The hardware required for the docking system is expensive compared to the cost of
the robot: Wireless B/W Camera $250, Receiver $100, Capture Card $100-$600.
The robot itself costs approximately $500, most of which is in the cost for the
motors. Though in this particular case we performed the vision processing off-
board, a more realistic scenario would be to have the vision processing done on-
board. Vision is a computing-intensive application, and thus we would need a fair
amount of processing power on the robot, which is difficult for a robot of this size.

5.3. Docking Systems for Repairable Robots
The above system was a second attempt at a docking system. The first system used
infrared light emitting diodes (LEDs) to perform the docking procedure. This
docking system was very inexpensive and computationally simple, but had several
properties that were unacceptable in a docking system for cooperative repair. In
order to find a damaged robot, the damaged robot had to turn on two LEDs in order
for the repair robot to dock with it. Obviously, if the damaged robot does not have
power, this is impossible. As a general rule, one cannot assume that a robot in need
of repair can assist in the repair procedure in any way. Thus any docking system
used in a repair procedure should be passive with respect to the damaged robot.

For our specific class of repairable robots, where repair consists of replacing
failed modules, the docking system should allow the repair robot to dock with any
replaceable module. Though not included in this system, the extension is simple.
The addition of a visual bar code around the border of the visual target will allow us
to have a visual target for every replaceable module. A more general approach
might be to have one or more reference markers on the robot from which the relative
position of all the replaceable modules could be determined.

Another crucial feature of docking systems for repair robots is that there must
be a retry feature. There are an infinite number of possible failures that may occur
during the docking phase. Many of these failures are only transient, and thus can be
overcome if the docking procedure is repeated. Also, if the retries fail, it should be
possible to re-plan at a higher level. In our case, this means using our ultrasonic
localization system to move the robot to a configuration from which it can attempt
the docking procedure again.

6. Conclusion

We have presented the concept of cooperative repair. Cooperative repair requires
three distinct steps: verification, diagnosis, and correction. The docking system in
conjunction with the mechanical design of the robot will allow us to complete the
correction aspect of these three steps. Our current goal is to integrate the docking
system with the localization system developed in [4]. We must then further develop
the system to be able to distinguish and dock with multiple modules and various
teammates.

The overall objective is to build a platform with which to develop the
remaining two aspects required for cooperative repair, namely fault detection and
fault diagnosis. Once the platform is complete, we will have a real platform to test
the algorithms and procedures being developed for fault detection and diagnosis.

References
[1] J. -C. Laprie et al.. Dependability – It’s Attributes, Impairments and Means. In

Predictably Dependable Computing Systems, pp.3-24, ISBN: 3-540-59334-9, 1995.
[2] B. Randell. Facing Up to Faults. Turing Lecture, 2000.
[3] C. Bererton, L.E. Navarro-Serment, R. Grabowski, C. J.J. Paredis and P. K. Khosla.

Millibots: Small Distributed Robots for Surveillance and Mapping. Government
Microcircuit Applications Conference, 2000.

[4] L.E. Navarro-Serment, C.J.J. Paredis and P.K. Khosla. A Beacon System for the
Localization of Distributed Robotic Teams. In Proceedings of the International
Conference on Field and Service Robotics, 1999.

[5] J. Gray. Why Do Computers Stop and What Can Be Done About It?. Technical
Report 85.7, PN87614, 1985.

[6] M. Yim, D. Duff and K. Roufas. PolyBot: a Modular Reconfigurable Robot. In
proceedings of the IEEE Conference on Robotics and Automation, 2000.

[7] S. Murata et al. Self-Repairing Mechanical System. In proceedings of SPIE
Conference on Sensor Fusion and Decentralized Control in Robotic Systems II, 1999.

[8] E. Yoshida et al. Experiment of Self-repairing Modular Machine. In proceedings of
SPIE Conference on Sensor Fusion and Decentralized Control in Robotic Systems II,
2000.

[9] P. Stone and M. Veloso. Multiagent systems: A survey from a machine learning
perspective. In Autonomous Robots, Volume 8, number 3, July 2000.

[10] T. Balch and R. Arkin. Motor schema-based formation control for multiagent robot
teams. In proceedings of the First International Conference on Multi-Agent Systems,
pp.17-24, 1995.

[11] S. Thrun, D. Fox, and W. Burgard. A Probabilistic Approach to Concurrent
Mapping and Localization for Mobile Robots. Machine Learning 31, 29--53 and
Autonomous Robots 5, 253—271.

[12] NASA Technology plan. Available at http://technologyplan.nasa.gov/, pp. 100-118,
2000.

[13] S. Hutchinson and G. Hager. A Tutorial on Visual Servo Control. In IEEE
Transactions on Robotics and Automation, Vol. 12, No. 5, 1996.

[14] J. Shi and C. Tomasi. Good Features to Track. In IEEE Conference on Computer
Vision and Pattern Recognition, 1994.

[15] L. Navarro, R. Grabowski, C. Paredis, and P. Khosla, 1999. Modularity in Small
Distributed Robots. In proceedings of the SPIE conference on Sensor Fusion and
Decentralized Control in robotic Systems II.

[16] C. Bererton and P. Khosla. Towards A Team of Robots with Reconfiguration and
Repair Capabilities. In proceedings International Conference on Robotics and
Automation, 2000.

[17] A. Briggs, D. Scharstein and S. Abbott. Reliable Mobile Robot Navigation From
Unreliable Visual Cues. Workshop on the Algorithmic Foundations of Robotics (WAFR
2000).

[18] D. Hershberger, Burridge, D. Kortenkamp and R. Simmons,. Distributed Visual
Servoing with a Roving Eye. In proceedings, IROS 2000.

[19] C. Colombo, B. Allotta and P. Dario. Affine Visual Servoing for Robot Relative
Positioning and Landmark-Based Docking, AdvRob(9), No. 4.

[20] S. Hutchinson, G. Hager and P. Corke. A Tutorial on Visual Servo Control, RA(12)
[21] W. Wilson, C. Hulls and G. Bell. Relative End-Effector Control Using Cartesian

Position Based Visual Servoing, RA(12), No. 5 1996.
[22] S. Mascaro and H. Asada. Docking control of holonomic omnidirectional vehicles

with applications to a hybrid wheelchair/bed system. In proceedings IEEE International
Conference on Robotics and Automation, Volume: 1, 1998.

[23] H. Roth and K. Schilling. Navigation and docking maneuvers of mobile robots in
industrial environments. Industrial Electronics Society. IECON ’98. In proceedings of the
24th Annual Conference of the IEEE, Volume: 4 , 1998.

