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Abstract: We present a method for representing, communicating, and fusing
distributed, noisy, and uncertain observations of an object by multiple robots. The
approach relies on re-parameterization the two-dimensional Gaussian distribution
to correspond more naturally to a robots’ observation space.  The approach
enables two or more observers to achieve greater effective sensor coverage of the
environment and improved accuracy in object position estimation.  We
demonstrate empirically that, using our approach, more observers achieve more
accurate object position estimates. The method is tested in three application areas:
object location, object tracking, and ball position estimation for robot soccer. We
provide quantitative evaluation of the technique on mobile robots.

1. Introduction

Typically, individual robots can only observe part of their environment at any
moment in time.  In dynamic environments, information previously collected about
currently unobservable parts of the environment grows stale and becomes
inaccurate.  Sharing information among robots increases the effective instantaneous
visibility of the environment, allowing for more accurate modeling and more
appropriate response.  If processed effectively, information collected from multiple
points of view can provide reduced uncertainty, improved accuracy, and increased
tolerance to single point failures in estimating the location of observed objects.

In order to meet the time demands of a highly dynamic environment (e.g.
robotic soccer), both the information transmitted between robots and the
computational demands to combine observations must be minimal.  Our approach
makes use of a few easily obtainable parameters describing an observation and
simple computations to meet these needs. We use two-dimensional statistical
representations of target location observations generated by individual robots.  Each
robot independently combines the multiple observations provided it in order to
produce improved estimates of target locations.  The local computation allows for
robust use of all available information without failure due to communication loss.

2. Background and Related Work

One common method of object position estimation, including robot location,
uses Kalman filters to track objects [17, 21, 22, 23] or robots [13, 15, 19] through
time, updating estimates based on previously known positions.  Data fusion of



multiple sensors (such as odometry, sonar, cameras, and laser range scanners) on a
single robot, using Kalman filters, has been used for robot localization [14, 15, 18,
19].  The technique is especially useful in dynamic applications such as robotic
soccer.  The CS Freiburg RoboCup team of Germany, for example, estimates
position using odometry and by finding the field borders in laser range scans [10].
These two estimates are fused using a Kalman filter to localize the robots.  Recent
developments  in localization in unknown environments by simultaneously mapping
and localizing rather than relying on previously generated maps [3, 8].  The specific
issues of multi-robot localization in a mapped environment are also investigated [9].

The ability to rapidly share distributed observations is critical in distributed
dynamic tasks like robotic soccer. Most robot soccer team approaches use vision
and/or sonar to localize and vision to locate objects in the environment.  Some share
information for planning and dynamic role assignment (ART [16]).  Others fill-in
blank areas in the world model with shared data (CS Freiburg [10, 11], RMIT [4],
5dpo [7]).  Other distributed sensing approaches include merging independent grid
cell occupancy probabilities measured by multiple robots (possibly distributed in
time) [5, 6], and curve fitting of models and observations by multiple robots [12].

The task we address is distinct from the others described above.  We focus on
fusing multiple simultaneous observations of the same object from distributed
vantage points (as opposed to observations from the same vantage point over
multiple instants in time).  Our objective is to provide more accurate instantaneous
estimations of the location of dynamic objects that are simultaneously visible by
multiple robots without relying on historical data.  Additionally, most probabilistic
methods rely on decomposing the space into discrete cells [5, 6, 9, 14, etc].  Our
approach does not require discretization, working in the continuous spatial domain.

3. Fusing Gaussian Distributions

3.1. Overview
We represent a single observation of an object as a two-dimensional Gaussian
distribution (Figure 1).  The center, or mean, of the distribution is the estimated
location of the object and the standard deviations along the major and minor axes of
the distribution correspond to estimates of the uncertainty (or noise) in the
observation along each axis.  The distribution corresponds to the conditional
probability that the object is in that location, given the observation.

Figure 1.  Distribution parameter definitions:  mean (x, y���DQJOH�RI�PDMRU�D[LV�� ���PDMRU�DQG
minor axis standard deviations ( maj, min), distance to mean (d).



Provided two observations are independent and drawn from normal
distributions, the observations can be merged into an improved estimate by
multiplying the distributions.  To meet cycle time requirements of a highly reactive
system, an efficient method of multiplying distributions is necessary.  We use a two-
dimensional statistical approach based on Bayes’ Rule and Kalman filters, first
introduced by Duffin [1].  In this approach, multi-dimensional Gaussian
distributions can be combined using simple matrix operations.  Since multiplying
Gaussian distributions results in a Gaussian distribution, the operation is symmetric,
associative, and can combine any number of distributions in any order.

Our approach, illustrated in Figure 2, is to collect observations of multiple
robots, and then merge the corresponding Gaussian distributions to yield a better
estimate of the location and uncertainty of the observed object.

The canonical form of the two-dimensional Gaussian distribution depends on
standard deviations, σx and σy, a covariance matrix, C, and the mean, as shown [20]:

The parameterization of the Gaussian distribution in this representation does
not correspond the parameters of our observations (Figure 1).  We address the
problem through a transformation of parameters from observation form to canonical
form.  In this form, the distributions can be merged using matrix operations.  After
all observations are merged, we extract the mean and standard deviations from the
merged result (these correspond to estimated location and uncertainty of the object).

3.2. Mathematical Details
We wish to determine the mean, standard deviations, and angle of the combined
distribution to estimate object position and characterize the quality of the estimate.
We can compute these parameters from sensor readings and models of sensor error
(deviations).  Thus, we require a method of determining combined parameters from
those of individual distributions.  The formulation we use is adopted from Smith and
Cheeseman [20] and derivations are provided in more detail in a technical report
[21].  Since the mean, standard deviations, and orientation of the major axis are

Figure 2. Block diagram of the multi-distribution merging process. Multiplication is
conducted using the mathematical formulation described above.  Each subsequent distribution
is merged with the previous result, and the final parameters are extracted.
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independent of scaling, they can be extracted from the resulting merged covariance
matrices without considering absolute probability values.

The covariance matrix, C, of an observation relative to coordinates aligned with
the major and minor distribution axes is initially determined from the major and
minor axis standard deviations in the local coordinate frame (designated L).

Since observations may be oriented arbitrarily with respect to the global
coordinate frame (angle θ relative to global x-axis), they must be transformed to this
frame.  Rotation of X in equation 1 by leads to the following relationship.

Once the observation is in canonical form, we combine individual covariance
matrices into a covariance matrix representing the combined distribution.

The mean of the resulting merged distribution, X, is computed from the
individual distribution means and covariance matrices.

The principal axis angle is obtained from the merged covariance matrix entries:

A, B, and D are top left, top right/lower left, and lower right entries, respectively.
Lastly, the resulting major and minor axis standard deviations are extracted by

rotating the covariance matrix to align with those axes and reversing Equation 2.

3.3. Simulated Example
Two robots observe a target object (Figure 3).  Each observation produces a
Gaussian distribution of possible locations for the object; typically, each distribution
provides greater accuracy along a different direction than the other distributions.

For this example, the robots are positioned with relative headings 90 degrees
apart and looking directly at the target.  The target is located at (10,10).  The two
simulated robot observations were drawn from a random normal distribution
centered at the object’s true position.  The major and minor axis standard deviations
of these distributions were (5,3) for robot 1 and (3,1) for robot 2.  Robot 1 reports a
mean of (12.34, 9.02) and robot 2 reports a mean of (9.90, 11.69).  In Figure 4, the
distribution resulting from the single measurements by robot 1 and robot 2 are
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Figure 3.  Left: Two (distributed) robots see a target.  Right: Observations generate
Gaussians; uncertainty (1-σ ovals shown) increases with distance.
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shown at left.  The resulting merged distribution is shown in at right.  The narrowing
of the distribution indicates that implied uncertainty (standard deviations) is reduced,
and the mean is more accurate relative to the actual target position.  The merged
mean is (9.97, 9.57), with major and minor axis standard deviations (0.89, 0.49).

4. Validation On Robots

4.1. Hardware Platform
The hardware platform used is a modified Cye robot, an inexpensive and
commercially available platform (Figure 5).  This platform consists of a drive
section and a trailer.  The drive section uses differential drive with two wheels and is
equipped with a front bump sensor; the trailer is passive.  On board the Cye is a
motor controller processor.  High level commands and image processing algorithms
are implemented in C and Java on a Pentium 266 (running linux) using TeamBots
[2].  A wide field-of-view NTSC video camera provides sensory input.  CMVision
performs color analysis and color blob detection and merging [2].  Robots
communicate with wireless ethernet.

Camera calibration was conducted at two levels.  First, Flatfish [14] determined
the parameters describing the aberrations of the lens.  These parameters enable
mapping from pixel location to points in three-space.

Figure 4.  Left:  The individual distributions to be merged.  Right:  Resulting merged
distribution, with reduced error and higher accuracy in the mean.

Figure 5.  Enhanced Cye Robot platform.



A second calibration step characterizes systemic errors.  Targets are placed at a
set of fixed distances and angles relative to the robot and the distance and angle
calculated by the vision system is recorded.  Comparing measured distance versus
actual distance provides a mean bias as a function of measurement distance.  After
correcting measurements for this bias, proportional errors are determined.

A histogram of these sensing errors determined that the corrected distances are
distributed about actual distance approximately normally. From these errors, a
standard deviation in percent distance can be directly determined.  A similar process
was completed for angle, though no bias correction was conducted.  These deviation
functions are used to compute parameters of the observation distributions.

4.2. Assumptions
Several assumptions are implicit in this approach.  In addition to assuming
independent, Gaussian sensor errors, the robot coordinate frames are assumed to be
coincident.  Without this, data are incompatible and the merging is meaningless.

We do not take into account robot positional uncertainty in the generation of
target location distributions; our localization is not fully implemented at this time.
Once determined, robot positional uncertainty can be incorporated by encoding it in
object positional uncertainty.  Merging the measurement uncertainty distribution
with the robot’s position distribution translated to the same mean spreads the
object’s position to accommodate both measurement and localization uncertainty.

Several additional assumptions were introduced for simplicity in
experimentation and camera calibration.  First, the camera parameter calibration
assumes that objects are at a known height from the ground plane; unknown objects
are therefore assumed to be on the ground plane.  This reduces the transformation
from three dimensions to two.  This is not a highly restrictive limitation, as common
obstacles, agents, landmarks, (etc) in environments are generally on the ground
plane.  Second, objects of interest are assumed to be unique in order to avoid the
necessity of solving the association problem.

4.3. Experimental Setup
An experiment was devised to directly test this approach to distributed sensing and
merged distributions without complications due to motion and positional
uncertainty.  Three stationary robots sequentially locate a stationary object at several
pre-determined points (Figure 6).  Robots share observations and compute resulting
merged position estimates for each point.  Computations were separately conducted
on pairs of data points. Thus, accuracy of single-robot measurements can be directly
compared to the accuracy obtained by combining data from two and three robots.

Figure 6.  Three robots observe a ball at several fixed locations (shown as circles on line) and
combine observations into single position estimates.



Figure 8.  Left:  Position error in x and y for each measurement.  Each merging lowers
position error bounds and reduces outlier frequency.  Right:  Mean position error in x and y
over all single observations, all 2-observation merges, and all 3-observation merges.

4.4. Experimental Results
Example experimental results are shown graphically. Figure 7 shows the results of
successive merging compared to the actual trajectory.  The top left compares robot
3’s observations (largest errors at the greatest distances from the robot).  The top
right similarly compares the result of merging two robots’ observations.  The
estimate resulting from merging three robots’ measurements is shown at the bottom.

Figure 7.   Reported data versus actual ball position for robot 3 (top left), robots 2 and 3
merged estimates (top right),  and  robots 1, 2, and 3 merged estimates (bottom).



Point-by-point trajectory errors are compared for  all single-robot, two-robot, and
three-robot measurements in Figure 8 (left).  While individual trajectories are
sometimes accurate at single points (in fact, occasionally more accurate than
combined data), the consistency of accuracy in combined results is absent in the
single-robot trajectories.  Additionally, outlier frequency is reduced.  This is best
characterized by plotting the mean error of all single-robot observations, all two-
robot observations, and all three-robot observations, as shown in Figure 8 (right).

5. Test Applications and Results

5.1. Location and Retrieval of Unseen Targets
This test exhibits the agents’ increased effective field
of view and ability to function with merged target
positions.  Initially, a robot is positioned so that it
can see, but not reach, the target.  Another cannot
see the target, even with camera panning, but the
path to the object is clear (Figure 9).  By sharing
information, robot 1 immediately obtains a target
position without random search and successfully
locates the object using only information provided
by robot 2.  Once the object is located, robot 1
reaches and manipulates it using the merged position
provided by both robots.  Due to the small distances
traveled from known starting positions, assumptions
on localization and coordinate frames hold.

5.2. Blind Robot Target Tracking
In this experiment, three robots are positioned around a target area (for convenience,
at relative headings of 90 degrees).  A ball is moved throughout the area, and all
robots track the ball using the position obtained by merging all three observations.
The robots are able to track the target in most cases, even at higher speeds, and
always quickly recover lost objects.  Even when the target travels along the line of
sight of a single robot (diminished accuracy in the depth dimension), the additional
point of view make up for this accuracy.  One robot is subsequently blindfolded by
covering the camera with a box (Figure 10, left).  The ability of the blinded robot to
track the ball using the merged position from the other two is not observably
diminished.  Fixed robot positions are precisely known; localization and coordinate
frame assumptions hold.

Figure 9.  Robot 1 initially
cannot see the target.  Robot 2
provides initial target location.

Figure 10.  Left:  A blind robot (left) can track targets by merging data provided by other
robots.  Right:  A soccer test.  Attacker (right) attempts to score on blue defender (left).



5.3. Robot Soccer
This approach to distributed sensing was applied to the CMU Hammerheads middle-
sized robot soccer team (Figure 10, right).  Robots transmit the position of the ball,
if visible, so that it can be combined with all other current observations.  This
provides robots far from the ball with more accurate positions and allows robots to
quickly locate an unseen ball.  Conflicting observations (means differing by more
than 2 standard deviations) were not merged to prevent false (or multiple) targets
and data collected in incompatible coordinate frames from resulting in confusion.

The 2000 Hammerheads robots were localized entirely by odometry.
Differences in coordinate frames arise from odometry drifts over time.  As a result,
the primary impact of distributed sensing was to provide a starting point for robots
to locate lost balls.  Despite coordinate frame discrepancy, frames were generally
coherent enough that the camera’s wide field of view allowed searching robots to
immediately locate an unobstructed ball by looking at a provided target position.

6. Conclusions

We present a method to improve target position estimates by fusing data from two or
more robot agents.  This approach, based on Bayes’ Rule and Kalman filter theory,
implements real-time sensor data fusion on a reactive multi-robot system for many
different applications.  The successful ability to fuse these statistical measurements
and the ability to receive position estimates of targets not visible allows our robots to
quickly acquire targets and to more accurately estimate object position.  While this
work uses only vision for sensing, the approach can be applied to any sensor or suite
of sensors which can be modeled by approximately Gaussian distributions.

This approach to distributed sensing and information sharing is very promising
based on the applications presented here: unseen target location, accurate target
acquisition and manipulation, and robot soccer.  However, several extensions of this
work are necessary for practical implementation.  Even in well-localized systems,
disparity between coordinate frames can arise and must be accommodated.
Autonomously determining the relative transformation between coordinate frames
using sensors will be investigated.  Additionally, the accommodation of robot
positional uncertainty will be incorporated into the target position distributions, as
described previously.  Lastly, it may be possible to implement a pixel-to-world
coordinate transformation that does not assume that objects are at a known elevation,
but this would require the development of a new method of camera calibration.
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