
Simulation and Experimental

Evaluation of Complete Sensor-based

Coverage in Rectilinear Environments

Zack J. Butler∗, Alfred A. Rizzi and Ralph L. Hollis
Robotics Institute

Carnegie Mellon University
zackb@cs.dartmouth.edu, {arizzi,rhollis}@ri.cmu.edu

Abstract: Although sensor-based coverage is a skill which is applicable
to a variety of robot tasks, its implementation has so far been limited,
mostly by the physical limitations of traditional mobile robots. This paper
presents sensor-based coverage algorithms both for a single robot and for
a team of independent robots which have been designed to allow for easy
integration on to real robots. The specific robots in question are planar
robots called couriers, components of the minifactory, an automated as-
sembly system. The couriers have excellent position sensing, which enables
them to perform coverage, but have no explicit range or contact sensors to
detect boundaries, which adds to the complexity of the coverage algorithm.
A set of experiments from simulation is presented to show the overall effi-
ciency of the single-robot and cooperative coverage processes in a variety
of environments. A second set of experiments performed on a real robot
demonstrates the ability to reliably perform sensor-based coverage and also
illuminates the effects of specific choices in the type of control used.

1. Introduction

Sensor-based coverage is the problem of directing a robot operating in an ini-
tially unknown environment to explore each and every point of the environment.
The applications are numerous, including demining, floor cleaning, and similar
tasks. While several algorithms have been proposed, demonstrations of theo-
retical correctness and successful applications have led to different approaches.
On the theoretical side, several works have shown how to reach every point
in an unknown environment in a provably correct way [1, 2, 3, 4], but few of
these have been applied to a real robot, and with limited success [4]. Much of
this difficulty can be attributed to the challenge of mobile robot localization,
compounded by the need to operate over a long time and large space in order
to perform coverage of interesting environments. In contrast, one successful
application of sensor-based coverage has been the development of autonomous
lawn mowers that use pseudo-random motions. This approach requires no on-
board mapping or odometry, but gives no theoretical guarantee of a complete
traversal of the environment, and is typically quite inefficient [5].

∗Currently with the Dept. of Computer Science, Dartmouth College, Hanover, NH

Figure 1. A schematic of the components of CCR.

In the minifactory, an automated assembly system designed for rapid de-
velopment and deployment [6], autonomous self-calibration is a critical step
— once a factory has been assembled from its component modules (each of
which is an independent robot or modular piece of infrastructure), the overall
structure of the factory must be verified and the precise relative locations of all
modules must be determined. Sensor-based coverage by the factory’s couriers

represents one way in which this task can be performed. Couriers are small
robots based on planar motors that have reliable position sensing (due to a
novel precision AC magnetic position sensor [7]) and motion capability in IR2,
although they can only detect the boundaries of their workspace by noting
an inability to move in a particular direction. The couriers’ position sensing
abilities and the system’s highly structured (rectilinear) environment provide
a domain in which complete sensor-based coverage can be reliably performed.

This paper documents the successful application of new sensor-based cov-
erage algorithms in simulation and on a minifactory courier. We discuss key
features of (and additions to) the proven algorithm and present experimental
results verifying that with appropriate attention to detail in terms of the algo-
rithmic inputs and outputs as well as the incorporation of appropriate models
for position error, a provably correct coverage algorithm can be successfully
implemented on a real robot.

2. Coverage algorithms

Because of the unusual nature of the couriers’ sensing and environment, a
new sensor-based coverage algorithm was required. The algorithm developed,
CCR (Contact-based Coverage of Rectilinear environments), was also designed
specifically to allow for the addition of cooperation as well as straightforward
implementation on the couriers. CCR, shown in schematic form in Fig. 1,
achieves complete coverage of any rectilinear environment by incrementally
building an exact cellular decomposition of the environment C in a reactive
way. In each cycle of the algorithm, the map interpreter (half of CCR) uses an
ordered list of rules to evaluate C and the current position p and chooses a single
straight-line trajectory with which to continue coverage. The robot executes the
trajectory without interference from CCR until a specified maximum distance
has been traveled or a collision is experienced. At this point the event handler

updates C based on the new event and the position at which it occurred.
The basic behavior of CCR is to cover each cell with a seed-sowing path, as

Figure 2. An example of a cellular decomposition that would be constructed
by CCR, along with a portion of a seed-sowing path used to perform coverage.

shown in Fig. 2. It starts with the assumption that the environment can be
represented by a single rectangular cell, and commands the robot to perform
seed-sowing until a corner is discovered in the environment. When this occurs,
it will construct additional cells, localize the corner, and continue seed-sowing
in one cell. This process continues until the boundary of C is known and closed
and its interior is covered. A proof that CCR will produce complete coverage
of any finite rectilinear environment was presented in [8], although the proof
assumes perfect position sensing.

In addition, an algorithm for distributed sensor-based coverage, DCR, was
developed under which each robot independently runs a slightly modified ver-
sion of CCR to perform coverage [9]. Cooperation is induced by adding an al-
gorithmic component which alters C to reflect data obtained from other robots.
This function, the overseer, operates in parallel with (and independent of) the
event handler, so that the map interpreter can examine C and plan coverage
without knowing anything about the cooperation process. A final additional
function works to determine the robots’ relative locations in their environment,
as this information is assumed to be unknown when coverage begins. This algo-
rithmic structure allows CCR (and its proof) to be retained virtually without
alteration while allowing for increased efficiency in terms of total time required
by the team. Starting with the proof of CCR, a proof was developed that shows
that any number of cooperating robots running DCR will collectively produce
complete coverage of their environment [8].

3. Algorithm deployment

Although the coverage algorithms outlined above were developed with real-
world application in mind (for example, the use of straight-line trajectory out-
puts simplifies deployment), there are necessary additions that are not funda-
mental to the proof of correctness. One important point to consider is localiza-
tion ability — while the couriers have high precision position sensing, especially
compared to most mobile robots, it is still not perfect, nor is the environment
(in terms of being strictly rectilinear). Therefore the development of the cell
decomposition and the way it is used to generate trajectories for the robot must

allow for non-cumulative error in the robot’s position. For example, the rules
of the map interpreter implicitly assume that the cells of the decomposition do
not overlap, and so as the event handler creates and updates cells this property
must be maintained.

Under DCR, these localization issues still apply for each robot, but in ad-
dition, when data is shared between robots, each of which have uncertainty in
their maps, each robot must build a map that is consistent and representative
of the underlying environment. In addition, since DCR necessarily involves
multiple robots in a common workspace, and the robots do not know their
relative initial locations, inter-robot collisions are inevitable and must be han-
dled in the context of coverage. The current simulations use a simple reactive
avoidance strategy, wherein after two robots collide, they will decide which one
should attempt to move out of the other’s way. This works fairly well for two
robots, but leads to frequent deadlock in large teams and in confined spaces.

Another practical issue is the ability to follow walls and detect gaps in
them. Since the couriers have only contact sensing, CCR was written (and
proven) based on the ability of the robot to perform sliding motions, in which
the robot maintains contact with a boundary while moving along it. The robot
must be able to detect a loss of contact with the boundary as well as contact
in the direction of motion. If sliding motions cannot be executed, an alter-
native is to approximate them by interleaving small free-space motions along
the boundary with short motions to contact the boundary. These interleaved
motions can be produced at the control level (from a sliding trajectory spec-
ification) or at the algorithmic level (by slightly altering the rules of the map
interpreter that generate the sliding motions). In either case, a proof has been
developed that shows that the robot will still produce complete coverage in
virtually all rectilinear environments [8].

In addition to these algorithmic issues, when implementing coverage on
the courier, there is a choice to be made about the type of control used.
The courier’s position sensor allows for micron-level precision and accuracy
in the range of tens of microns throughout its workspace, enabling a variety of
closed-loop control policies (with widely variable parameters) in addition to the
open-loop microstepping commonly used to control planar motors. The most
important choice is whether to attempt the sliding motions described above.
The use of these motions inherently requires smooth boundaries and control
based on good force sensing (or estimation). While the distance traveled by
the robot to perform coverage is similar whether or not sliding is used, sliding
motions are much more efficient in terms of time required, as shown in Sec. 5.
A previously developed dynamic force controller [10] was used which allows for
straight-line motion (both in contact and in free space). This controller uses
an estimator to determine the disturbance force on the courier from position
data, and attempts to apply a given desired force in each of x and y. Damping
is then added in each direction to implicitly set a maximum velocity. By using
the same control law for motion and maintaining contact, instability due to
controller switching can be avoided. In addition, since the courier has no con-
tact sensors, the controllers also use the force estimate to determine if contact

Environment size 5w × 5w 10w × 10w 20w × 20w
Average cf 2.483 1.710 1.367
Std. deviation 0.1300 0.0636 0.0219

Table 1. Performance of CCR in square environments of various sizes, where
w is the width of the robot.

Environment Random Fig. 3a Fig. 3b
Average cf 2.307 1.986 3.557
Std. deviation 0.329 0.086 0.144

Table 2. Performance of CCR in various complex environments.

has occurred, and are able to immediately return this result to the higher level
interface code.

4. Simulation experiments

Implementations of CCR and DCR were developed and operated in simula-
tions that incorporated the position error models and optional sliding motions
described above. The simulation was developed using a world modeler function
in place of real physics, where the “Robot” block appears in Fig. 1. Since both
CCR and DCR interact with the world through simple interfaces (straight-
line trajectory output and a single position reading and one-bit contact sensor
inputs), integrating such a function with the coverage algorithms was straight-
forward. These implementations were then run in a wide variety of simulated
environments to determine typical efficiency for a single robot as well as the ef-
ficiency gain for robots in a cooperative team. To describe the efficiency of the
algorithm as performed experimentally (both in simulation and on the courier),
we define the coverage factor metric as the average number of times the robot
passes over each point in the environment. This is easily calculated as:

cf =
d× w

Area(C)
,

where d is the total distance traveled and w the robot width.
Ideally, the coverage factor for pure seed-sowing would be exactly 1, but

two factors make this impossible to achieve in practice. First, unless the robot
starts exactly an integer multiple of w away from the edge of the cell, it will
finish seed-sowing with a pass that does not add a full robot-width of covered
area (because it has only contact sensing, it cannot detect the edge of the cell
until it has reached it). Also, in order to ensure detection of all gaps in the top
and bottom of each cell, CCR requires the robot to cover these edges twice.
To empirically determine the magnitude of these effects, CCR was run from 50
different starting locations in each of three empty square environments. The
results of these experiments are given in Table 1. These experiments show that
these inefficiencies have decreasing effect as the environment gets larger, which
is as expected, since they add distance proportional to the perimeter of the
cell, which is then divided by the area of the cell to calculate cf .

(a) (b)

Figure 3. Environments used to test CCR. The black square in each represents
the size of the robot.

CCR was then tested in a variety of randomly generated environments,
with results reported in the first column of Table 2. These environments were
generated by populating an open square of dimension ∼20w×20w with between
three and eight rectangular obstacles, each with a random height and width
between w/20 and 10w. In addition, the two environments shown in Fig. 3
were chosen for repeated tests (50 runs in each), the results of which are also
reported in Table 2. The coverage factor for CCR ranged from under 2.0 for
reasonably open environments, such as that of Fig. 3a, to nearly 4.0 for very
cluttered spaces, such as Fig. 3b (which was manually designed to be adversarial
to CCR). It is worth noting that these data compare favorably to previously
reported values for other (simulated) algorithms, and very favorably to the
ratio of about 10 for the randomized technique used by the Friendly Robotics
lawn mower1.

To measure the efficiency gain of cooperating robots running DCR, teams
of sizes from two to ten robots were run in the environment of Fig. 3a. The
coverage factor for each robot was then compared to that achieved by a single
robot in the same environment. Under DCR, each robot will develop a complete
cell decomposition of the environment, so that the coverage factor for each will
simply be proportional to the total distance it has traveled, which will hopefully
be smaller for each robot than if it was working alone. This was in fact the
case for these experiments, as shown in Table 3. The coverage factor decreased
about 30% for each robot in a two-robot team, and almost 50% for each of
three robots (this was also true for other similar environments). In addition,
these experiments showed that the work was divided fairly evenly among the
robots. This was measured by noting the largest coverage factor among the
team for each run, and as can be seen in Table 3, in general no robot had to
do more than 10% more work than the average robot.

For larger teams, in order to avoid frequent deadlock, the world modeler
was set up such that collisions between the simulated robots would not occur
(i.e. the robots simply traveled through each other). With this allowance, the

1Using data from the manufacturer’s data sheet [11], cf ≈
0.5[m/s]×0.56[m]

1000[ft2/hr]
= 10.84

Two robots Three robots Five Ten
‖ orient. ⊥ orient. w/ coll w/o coll robots robots

trials 15 15 10 10 10 10
Average cf 1.309 1.294 1.134 1.093 0.922 0.698
Avg. max. cf 1.408 1.365 1.268 1.205 1.096 0.790

Table 3. Performance of DCR in the environment of Fig. 3a. Note that all
runs with 2 robots include include inter-robot collisions while all runs with 5
and 10 robots do not.

Single Two robots Three
robot ‖ orient. ⊥ orient. robots

Number of trials 50 10 11 10
Average cf 3.557 1.936 1.981 1.450
Avg. maximum cf — 1.947 1.985 1.547

Table 4. Performance of DCR in the environment of Fig. 3b.

efficiency continued to improve with increasing team size in teams up to ten
robots. It is likely that with collisions in place (which would require a better
collision avoidance strategy for success), this increase would not be achievable,
as the robots would spend considerable time avoiding each other. However,
experiments with and without collisions for three robots show only a very slight
loss of efficiency with the addition of collisions.

A set of experiments in the adversarial environment of Fig. 3b was also
performed, and shows that the constricting nature of this environment was
actually beneficial to DCR. Since this environment will always be decomposed
into many small cells, the cooperation between the robots (which happens via
transfer of completed cells) could be done more frequently. This allowed the
robots to spend less time working in the same areas, leading to a decrease in
coverage factor of approximately 45% for each of two robots and nearly 60%
for three robots.

5. Courier experiments

As mentioned earlier, the use of straight-line trajectories as outputs from CCR

and the acceptance of small position errors allowed for a straightforward transi-
tion from simulation to the courier. The same algorithmic code was used as in
simulation by simply replacing the world modeler with calls to the underlying
courier motion control system, which in turn used the trajectory specification
to create appropriately parameterized controllers. CCR was tested in three
environments: two were those shown in Fig. 4, and the third was a simple rect-
angle of similar size (approximately 70×100 cm, compared to a courier width
of 15 cm). Ten runs were performed in each of two orientations and varying
starting positions in each environment to determine the efficiency and qualita-
tive capabilities of the algorithm. The results of these experiments are given
in Table 5. These data confirm that the efficiency obtained in simulation is

(a) (b)

Figure 4. Environments used for CCR testing, consisting of half of a commercial
platen surface with additional obstacles. The tethered courier performing CCR

is included for scale.

Environment Empty platen Fig. 4a Fig. 4b
Orientation std. rot. std. rot. std rot.
Number of Runs 10 10 10 10 10 10
Average cf 1.69 1.72 2.99 2.68 2.92 3.05
Std. deviation 0.13 0.08 0.27 0.26 0.23 0.30

Table 5. Performance of CCR on the courier in the environments of Fig. 4.
“Standard” orientation is as shown in Fig. 4 (note overlaid coordinate axes)
and “rotated” orientation is 90◦ counter-clockwise.

comparable to that seen in the real system — note that the environments in
Fig. 4 are fairly constricted relative to that in Fig. 3a and most other simulated
environments, accounting for the somewhat higher coverage factors.

The major failure modes resulted from the courier’s tether producing an
occasional large disturbance force and the boundaries not being amenable to
sliding motions, both of which were overcome with careful engineering. One
point of particular interest is the environment shown in Fig. 4b, in which the
free space is not simply connected, requiring the robot to successfully attach
the cells of the decomposition around the obstacle (in the presence of position
uncertainty) to complete coverage. This was successfully done under a variety
of conditions, although small additions to CCR were required.

Finally, although the coverage factor indicates the distance traveled to
perform coverage, when instantiated on a real system, the time taken for cov-
erage is also of interest. Therefore, experiments were performed using different
types of control and different maximum velocities vmax to determine empiri-
cally how the type of control affects the overall performance. Each set of control
parameters was run from two starting locations in each of two environments,
making four coverage “tasks”. The simplest type of control used was open-
loop trajectory following based on microstepping of the planar motor, using
the position sensor only to detect collision (by noticing a significant difference

Control type O.L. C.L. C.L. C.L. C.L.
Sliding? No No No Yes Yes
vmax [mm/s] 70 70 250 70 250

Empty platen (p1) 310 281 230 115 46
Empty platen (p2) 318 295 234 140 53
Fig. 4a (p1) 409 399 291 224 91
Fig. 4a (p2) 365 341 250 201 79

Table 6. Elapsed time (in seconds) for CCR under various open-loop (O.L.)
and closed-loop (C.L.) control strategies.

between the commanded position and the actual position). While this is the
easiest to implement, and is the standard mode of operation for planar motors,
it is not capable of recovering from large disturbances such as those caused
by strong impact. (This type of operation is fairly insensitive to small distur-
bances, however, making it suitable for certain types of operations.) Therefore,
the maximum speed at which coverage could reliably be completed under this
technique was approximately 70 mm/s. The amount of time required for the
four coverage tasks is shown in the first column of Table 6. For some of these
tasks, as well as some of the closed-loop experiments described below, the ex-
periment was run several times, to confirm that variations from one run to the
next due to random disturbances were slight (on the order of 1-3 s) compared
to the overall time required.

To measure the effect of the sliding motions, since these operate under
closed-loop control, it was first necessary to test the interleaved motions under
closed-loop control. As can be seen in Table 6, this resulted in a slight im-
provement over the open loop technique for the same vmax, probably due to
the collision detection being more responsive under closed-loop control. Then,
since the controller added the capability for recovery from collisions at higher
speeds (reliably up to about 250 mm/s), the interleaved motions were tested
at a vmax of 250 mm/s, and the sliding control was run for the same four tasks
at the same two velocities. It was found that without the sliding motions, in-
creasing vmax had little effect, as the majority of the elapsed time was spent
executing the short interleaved motions along boundaries during which vmax

was not reached. However, with sliding enabled with small vmax, the elapsed
time was about half as much as without sliding, since the exploration of the
boundaries did not require stopping. In addition, for higher vmax, the sliding
motions could realize even more advantage during the boundary explorations,
and used as little as one quarter of the time required for the interleaved motions
with the same maximum velocity.

6. Conclusions

This work has demonstrated that with an appropriately designed coverage al-
gorithm along with a well-engineered robot system, it is possible to reliably
execute provably complete sensor-based coverage in the real world. The algo-

rithms interface to the robot through simple channels, allowing them to plug in
to a simulation or a robot system in a straightforward way. Experiments both
in simulation and on a robot have returned efficiencies that are comparable to
previous theoretical results and much better than current commercial hardware
implementations.

The major avenue for future work is to implement the cooperative algo-
rithm DCR on a set of couriers. The biggest challenge there is to implement a
strategy for the tethered couriers to share a workspace (in which they initially
have no knowledge of each other’s location) without tangling their tethers while
still making progress toward coverage.

Acknowledgements

The courier experiments would not have been possible without the work of
Arthur Quaid, who developed the courier control software and interface code
for it. This work was supported in part by NSF grants DMI-9523156 and
DMI-9527190.

References
[1] A. Pirzadeh and W. Snyder, “A unified solution to coverage and search in ex-

plored and unexplored terrains using indirect control,” in Proc. of IEEE Int’l.

Conf. on Robotics and Automation, pp. 2113–2119, April 1990.

[2] S. Hert, S. Tiwari, and V. Lumelsky, “A terrain covering algorithm for an AUV,”
Autonomous Robots, vol. 3, pp. 91–119, 1996.

[3] I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein, “MAC versus PC: De-
terminism and randomness as complementary approaches to robotic exploration
of continuous domains,” Int’l Journal of Robotics Research, vol. 19, pp. 12–31,
January 2000.

[4] E. Acar and H. Choset, “Critical point sensing in unknown environments for
mapping,” in Proc. of IEEE Int’l Conf. on Robotics and Automation, April 2000.

[5] Friendly Robotics, “RoboSim: RL500 simulator.” Available at
http://www.friendlyrobotics.com/sim/RoboSim.exe.

[6] R. L. Hollis and J. Gowdy, “Miniature factories for precision assembly,” in Int’l

Workshop on Microfactories, (Tsukuba, Japan), pp. 9–14, 1998.

[7] Z. J. Butler, A. A. Rizzi, and R. L. Hollis, “Integrated precision 3-DOF position
sensor for planar linear motors,” in Proc. of IEEE Int’l. Conf. on Robotics and

Automation, May 1998.

[8] Z. J. Butler, Distributed Coverage of Rectilinear Environments. PhD thesis,
Carnegie Mellon, September 2000.

[9] Z. J. Butler, A. A. Rizzi, and R. L. Hollis, “Distributed coverage of rectilinear
environments,” in Proc. of the Workshop on the Algorithmic Foundations of

Robotics, (Hanover, NH), March 2000.

[10] A. Quaid, A Planar Robot for High-Performance Manipulation. PhD thesis,
Carnegie Mellon, July 2000.

[11] Friendly Robotics, RL500 Owner Operating Manual. Available at
http://www.friendlyrobotics.com/um/RL500 manual.pdf.

