
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Boyer-Moore type algorithm for compressed
pattern matching

Shibata, Yusuke
Department of Informatics, Kyushu University

Matsumoto, Tetsuya
Department of Informatics, Kyushu University

Takeda, Masayuki
Department of Informatics, Kyushu University

Shinohara, Ayumi
Department of Informatics, Kyushu University

他

https://hdl.handle.net/2324/3029

出版情報：DOI Technical Report. 170, 1999-01. Department of Informatics, Kyushu University
バージョン：
権利関係：



DOI-TR-170

DOI Technical Report

A Boyer-Moore type algorithm for compressed pattern

matching

by

Yusuke Shibata, Tetsuya Matsumoto, Masayuki

Takeda, Ayumi Shinohara and Setsuo Arikawa

January 1999

Department of Informatics
Kyushu University

Fukuoka 812-8581, Japan

Email: tetsuya@i.kyushu-u.ac.jp Phone: +81-92-642-2697





A Boyer-Moore type algorithm for compressed

pattern matching

Yusuke Shibata Tetsuya Matsumoto Masayuki Takeda
Ayumi Shinohara

Setsuo Arikawa

Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan

{ yusuke, tetsuya, takeda, ayumi, arikawa } @i.kyushu-u.ac.jp

January 14, 2000

Abstract

Recently the compressed pattern matching problem has attracted special
concern, where the goal is to find a pattern in a compressed text without de-
compression. In previous work, we proposed an Aho-Corasick (AC) type algo-
rithm for searching in text files compressed by the so-called byte pair encoding
(BPE). The searching time is reduced at the same rate as the compression ratio
compared with AC. In this paper, we show a Boyer-Moore (BM) type algorithm
for pattern matching in BPE compressed files. Experimental results show that
the algorithm runs about 1.5 ∼ 3.0 times faster than the exact match routines
based on the BM algorithm in the software package Agrep, which is known as
the fastest pattern matching tool.

1 Introduction

The problem of compressed pattern matching is to find pattern occurrences in com-

pressed text without decompression. It has been extensively studied for various com-

pression methods by many researchers in the last decade. For recent developments,

see the survey [17].

Let n and N denote the compressed text length and the original text length, re-

spectively. Theoretically, the best compression has n =
√

N for the Lempel-Ziv-Welch

(LZW) encoding [21], and n = log N for LZ77 [24]. Thus an O(n) time algorithm

for searching directly in compressed text is considered to be better than a simple

O(N) time algorithm for searching in the original text.1 However, in practice n is

linearly proportional to N for real text files. For this reason, an elaborate O(n) time

1The O(n) time algorithm requires an extra O(r) time in order to report all pattern occurrences,
where r is the number of them, and r could be linear in N . But, we here ignore the O(r) factor.

1



2Yusuke Shibata, Tetsuya Matsumoto, Masayuki Takeda, Ayumi Shinohara and Setsuo Arikawa

algorithm for searching in compressed text is often slower than a simple O(N) time

algorithm running on the original text. For example, as shown in [12, 16], searching

in LZW compressed files is slower than searching in the original files though it is fast

in comparison with a regular decompression followed by a simple search. In order

to speed up pattern matching by text compression, we have to choose an appropri-

ate compression method paying attention to the constant factors hidden behind the

O-notation.

The first attempt was made by Manber [15]. The approach is to encode a given

pattern and to apply any search routine in order to find the encoded pattern within

compressed files. The problem in this approach is that the pattern may have more

than one encoding. A compression scheme based on the pattern-substitution [10] is

introduced in which the number of possible encodings of any string is restricted. The

reductions in file size and searching time, however, are not so good (only about 30%).

In a recent work [18], we focused on the compression method called the byte pair

encoding (BPE) [8], and showed that it is very suitable for speeding up pattern match-

ing. BPE is also based on the pattern-substitution.2 The basic operation is to sub-

stitute a single character which did not appear in the text for a pair of consecutive

two characters which frequently appears in the text. This operation will be repeated

until either all characters are used up or no pair of consecutive two characters appears

frequently. We proposed in [18] an algorithm for searching in BPE compressed files,

which runs in O(n) time after some preprocessing. It is indeed faster than the famous

O(N) time algorithms, such as the Knuth-Morris-Pratt (KMP) algorithm [13] and

the Shift-Or algorithm [23, 3]. The searching time is reduced at nearly the same rate

as the compression ratio. Thus we have shown that text compression by BPE speeds

up these O(N) time algorithms.

However, there are sublinear time algorithms, such as the Boyer-Moore (BM) al-

gorithm [4], which skip many characters of text and run faster than the O(N) time

algorithms on the average. The software package Agrep, known as the fastest pattern

matching tool, uses the Horspool variation [9] of the BM algorithm. Our algorithm in

[18] is not better than Agrep in the case of searching for a long pattern in text files that

are not highly compressible by BPE, whereas it defeats Agrep for highly compressible

text files such as biological data. Then a question arises: Does text compression speed

up such a sublinear time algorithm?

In this paper, we give an affirmative answer to this question. We show a BM type

algorithm for searching in BPE compressed files. To our best knowledge, this is the

first attempt to develop such an algorithm in compressed text. Recall that in the

dictionary-based methods a compressed text can be viewed as a pair of a dictionary

D and a sequence S of tokens, each of which represents a phrase in defined in D.

The proposed algorithm runs on the sequence S, with skipping some tokens. The

token-wise processing has two advantages in comparison with the usual character-

2The compression method named Re-Pair [14] is considered as a generalization of BPE.
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wise processing. One is quick detection of a mismatch at each stage of the algorithm,

and the other is larger shift depending upon one token (not upon one character) to

align the phrase with its occurrence within the pattern. Disadvantage is that the

shift value is divided by C, the maximum phrase length, assuming that the phrases

corresponding to the skipped tokens are all of length C. Therefore the value of C

is a crucial factor. We observed that putting a restriction on C makes no great

sacrifice of compression ratio even for C = 3, 4. Experimental results show that the

proposed algorithm defeats the BM type algorithms running on the original text files.

Especially, it is about 1.5 ∼ 3.0 times faster than Agrep.

It should be emphasized that Moura et al. [7] proposed a compression scheme that

uses a word-based Huffman encoding with a byte-oriented code. They presented an

algorithm which runs twice faster than Agrep [22]. However, the compression method

is not applicable to such texts as biological sequence data, which cannot be segmented

into words. Both of our previous and new algorithms can deal with such texts.

2 Efficiency of compressed pattern matching

In order to achieve a fast search in compressed files, we have to re-estimate the existing

compression methods in the light of the new criterion: Efficiency of compressed pattern

matching.

As an effective tool for such re-estimation, we introduced in [11] a unifying frame-

work, named collage system, which abstracts various dictionary-based compression

methods, such as the Lempel-Ziv family, BPE, and the static dictionary methods. In

the framework, a text string is described by a pair of a dictionary D and a sequence S of

tokens, each of which represents a phrase defined in D. The dictionary D is given as a

sequence of assignments where the basic operations are concatenation, repetition, and

prefix (suffix) truncation. We developed in [11] a general compressed pattern match-

ing algorithm for texts described in terms of collage system. Consequently, any of the

compression methods that can be described within the framework has a compressed

pattern matching algorithm as an instance. We denote by t.u the phrase represented

by a token t. Let S = S[1 : n]. The original text is thus S[1].u · S[2] · · · S[n].u. Let

‖D‖ and height(D) respectively denote the number of assignments in D and the max-

imum dependency in D. Let π = π[1 : m] be a given pattern. Let r be the number of

all occurrences of π in the text.

Theorem 1 (Kida et al. 1999) The problem of compressed pattern matching can

be solved in O((‖D‖ + n) · height(D) + m2 + r) time using O(‖D‖ + m2) space. If D
contains no truncation, the time complexity becomes O(‖D‖ + n + m2 + r).

Figure 1 gives an overview of the algorithm presented in [11]. It is an on-line algorithm

in the sense that it processes S token-by-token. The algorithm simulates the move

of the KMP automaton running on the original text, by using two functions Jump
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Input: Pattern π and compressed text consisting of D and S = S[1 : n].
Output: All occurrences of π in the original text.
begin
/* Preprocessing for computing Jump and Output. */

Preprocess the pattern π and the dictionary D;
/* Main routine */

state := 0; ℓ := 0;
for i := 1 to n do begin

for each d ∈ Output(state,S[i]) do
Report a pattern occurrence that ends at position ℓ + d;

state := Jump(state,S[i]); ℓ := ℓ + |S[i].u|
end

end.

Figure 1: On-line algorithm for searching in compressed text.

and Output, both take as input a state and a token. The former is used to substitute

just one state transition for the consecutive state transitions of the KMP automaton

caused by each of the phrases, and the latter is used to report all pattern occurrences

found during the state transitions. This idea is essentially based on the algorithm for

searching in LZW compressed text due to Amir et al. [2] which finds only the leftmost

pattern occurrence. The extension to find all pattern occurrences was achieved by

Kida et al. in [12], together with an extension to the multiple pattern problem.

The above idea can also be applied to compressed pattern matching for other

compression methods that are not contained in the collage system. For instance,

we presented in [19] an algorithm, based on the similar idea, for searching in texts

compressed using anti-dictionaries [5].

Theorem 1 suggests that a compression method described as a collage system with

no truncation might be suitable for the speed-up of pattern matching. In fact the

collage system for LZ77 has truncation and LZ77 is not suitable as shown in [16].

The collage system for LZW has no truncation. However, the dictionary D is not

encoded explicitly: it will be incrementally re-built from S. The preprocessing of D
is therefore merged into the main routine. This is one of the reasons why compressed

pattern matching for LZW is slow. Another reason is as follows. Although Jump

can be realized using only O(‖D‖ + m) space so that it answers in constant time,

the constant is relatively large. But the two-dimensional array realization requires

O(‖D‖ · m) space, which is unrealistic because ‖D‖ is linear with respect to n in the

case of LZW.

BPE is a collage system with no truncation. Unlike LZW and LZ77, BPE has the

following good properties.

• The dictionary D is encoded separately from the sequence S.
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T [0] := $; /* $ is a character that never occurs in pattern */
i := m;
while i ≤ N do begin

state := 0; ℓ := 0;
while g(state, T [i − ℓ]) is defined do begin

state := g(state, T [i − ℓ]);
ℓ := ℓ + 1

end;
if state = m then report a pattern occurrence;
i := i + shift(state, T [i − ℓ])

end

Figure 2: BM type algorithm on uncompressed text.

• The size of D is small enough (i.e. ‖D‖ ≤ 256).

• The tokens of S are encoded using a fixed length code.

We can take the two-dimensional array realization of Jump as in [18], which is realistic

since the array size is only 256 · (m + 1).

The maximum phrase length C is crucial for a sublinear time search in compressed

text. Experimental result shows that we can put a restriction on C with little sacrifice

of compression ratio, e.g. C = 3 or 4. Thus, BPE is considered suitable for our

purpose.

3 BM type algorithm for compressed search

We first briefly sketch the BM algorithm, and then present a BM type algorithm for

searching in BPE compressed files.

3.1 BM type algorithm on uncompressed text

The BM type algorithm performs the character comparisons in the right-to-left di-

rection, and slides the pattern to the right using the so-called shift function when a

mismatch occurs. The algorithm for searching in text T [1 : N ] is shown in Fig. 2.

Note that the function g is the state transition function of the (partial) automaton

that accepts the reversed pattern, in which state j represents the length j suffix of

the pattern. Such an automata-oriented description of the character comparisons is

for convenience of explanation of the algorithm in Section 3.2.

Although there are many variations of the shift function, they are basically designed

to shift the pattern to the right so as to align a text substring with its rightmost
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occurrence within the pattern. Let

rightmost occ(w) = min

{

ℓ > 0

∣

∣

∣

∣

π[m − ℓ − |w| : m − ℓ] = w, or
π[1 : m − ℓ] is a suffix of w

}

.

The following definition, presented in [20] (for multiple pattern case), is the one which

utilizes all information gathered in one stage.

shift(j, a) = rightmost occ(a · π[m − j + 1 : m]).

3.2 BM type compressed pattern matching

Figure 3 gives an overview of our algorithm. For each iteration of the while-loop, we

determine in Step 1 the pattern occurrences that end within the phrase represented

by the token we focus on, and then shift our focus to the right by ∆ obtained in

Step 2. In the following we discuss how to realize Step 1 and Step 2.

Figure 4 illustrates pattern occurrences that end within the focused phrase. Note

that we assume the pattern length m is sufficiently larger than the maximum phrase

length C. A candidate for pattern occurrence is a prefix of the focused phrase that

is also a suffix of the pattern. There may be more than one candidate to be checked.

Naive method is to check all of them independently, but we take here another ap-

proach. We shall start with the longest one. For the case of uncompressed text, we

can do it by using the partial automaton for the reversed pattern stated in Section 3.1.

When a mismatch occurs, we change the state by using the failure function and try to

proceed into the left direction. The process is repeated until the pattern does not have

an overlap with the phrase at which we started. In order to perform such processing

in compressed text, we use the two functions Jump and Output defined in the sequel,

which differ from those mentioned in Section 2.

Let lps(w) denote the longest prefix of a string w that is also a suffix of the pat-

tern π. Extend the function g into the domain {0, 1, . . . , m} × Σ∗ by g(j, aw) =

g(g(j, w), a), if g(j, w) is defined; undefined, otherwise, where w ∈ Σ∗ and a ∈ Σ. Let

f(j) be the largest integer k (k < j) such that the length k suffix of the pattern is

a prefix of the length j suffix of the pattern. Note that f is the same as the failure

function of the KMP automaton. The functions Jump and Output are defined as

focus := ⌈m/C⌉;
while focus ≤ n do begin

Step 1: Find all pattern occurrences that end within the string S[focus].u;
Step 2: Compute a possible shift ∆ based on information gathered in Step 1;

focus := focus + ∆
end

Figure 3: Overview of sublinear time algorithm.
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Compressed text

Original text

Pattern occurrences

focus

Figure 4: Pattern occurrences.
.

procedure Find pattern occurrences(focus : integer);
begin

if Jump(0,S[focus]) is undefined then return;
state := Jump(0,S[focus]);
d := state; ℓ := 1;
repeat

while Jump(state,S[focus − ℓ]) is defined do begin
state := Jump(state,S[focus − ℓ]);
ℓ := ℓ + 1

end;
if Output(state,S[focus − ℓ]) = true then report a pattern occurrence;
d := d − (state − f(state));
state := f(state)

until d ≤ 0
end;

Figure 5: Finding pattern occurrences in Step 1.

follows.

Jump(j, t) =







g(j, t.u), if j 6= 0;
g(j, lps(t.u)), if j = 0 and lps(t.u) 6= ε;
undefined, otherwise.

,

Output(j, t) =

{

true, if g(j, w) = m and w is a proper suffix of t.u;
false, otherwise.

Theorem 2 The tables Jump and Output can be built in O(‖D‖ ·m) time and space.

The procedure for Step 1 is summarized in Fig. 5.

We use the shift function ∆(j, t), where j is a state and t is a token, in order to

shift the focus on a token to align the text substring t.u · π[m − j + 1 : m] with its

rightmost occurrence in π. The definition is as follows.

∆(j, t) =

{

⌈rightmost occ(t.u)/C⌉, if j = 0;
⌊rightmost occ(t.u · π[m − j + 1 : m])/C⌋, otherwise.

Note that this is a version of the function shift stated in Section 3.1. When returning

at the first if-then statement of the procedure in Fig. 5. we can shift the focus by
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Figure 6: Running times.

∆(0,S[focus]) to the right. Otherwise, we use the function ∆(·, ·) for the values of

state and S[focus− ℓ] just after the execution of the while-loop at the first iteration

of the repeat-until loop of the procedure.

A simplified version is also possible in which the value ∆(0, focus) is used indepen-

dently of the result of the procedure of Fig. 5.

Theorem 3 The table ∆ can be built in O(‖D‖ · m) time and space.

Proof. We can fill the entries of the table in the bottom-up manner by using the

directed acyclic word graph [6] for the reversed pattern. 2

4 Experimental results

We estimated the running times of the following four programs: Agrep; the BM

algorithm with shift function due to [20]; the AC type algorithm on BPE compressed

files due to [18] (abbreviated as ACB); and the BM type algorithm on BPE compressed

files (abbreviated as BMB). The text files we used are: (1) a clinically-oriented subset

of Medline, consisting of 348,566 references. The original file size is 60.3 Mbyte,

and the BPE compression ratio is 59.4% for C = 3; and (2) the file obtained by

removing all fields other than accession number and nucleotide sequence from a data

set from GenBank. The original file size is 17.1 Mbyte, and the BPE compression

ratio is 32.8% for C = 4. The machine used is SunMicrosystems Ultra Enterprise

3000 running Soralis 2.5.1 operating system. The results are shown in Fig. 6, where

we excluded the preprocessing times, which are negligible compared with the running

times. The proposed algorithm (BMB) is faster than all the others. Especially, it

runs about 1.5 times faster than Agrep for Medline, and about 3 times faster for

GenBank.
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5 Conclusion

For searching a very long pattern (e.g., m > 30), a simplified version of the backward-

dawg-matching algorithm [6] is very fast as reported in [1]. To develop its compressed

matching version will be our future work.
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