
On the Computational Power
of a Continuous-Space Optical Model

of Computation

Thomas J. Naughton and Damien Woods

TASS Group, Department of Computer Science,
National University of Ireland, Maynooth, Ireland.

dwoods@cs.may.ie

Abstract. We introduce a continuous-space model of computation. This
original model is inspired by the theory of Fourier optics. We show a lower
bound on the computational power of this model by Type-2 machine sim-
ulation. The limit on computational power of our model is nontrivial. We
define a problem solvable with our model that is not Type-2 computable.
The theory of optics does not preclude a physical implementation of our
model.

1 Introduction

In this paper we introduce to the theoretical computer science community an
original continuous-space model of computation. The model was developed for
the analysis of (analog) Fourier optical computing architectures and algorithms,
specifically pattern recognition and matrix algebra processors [3]. The function-
ality of the model is limited to operations routinely performed by optical sci-
entists thus ensuring it is implementable within this physical theory [10]. The
model uses a finite number of two dimensional (2-D) images of finite size and
infinite resolution for data storage. It can navigate, copy, and perform other op-
tical operations on its images. A useful analogy would be to describe the model
as a random access machine, without conditional branching and with registers
that hold images. This model has previously [4, 5] been shown to be at least
as computationally powerful as a universal Turing machine (TM). However, its
exact computational power has not yet been characterised. To demonstrate a
lower bound on computational power we simulate a Type-2 machine. The upper
bound is not obvious; the model can decide at least one language that a Type-2
machine can not. This combination of super-Turing power and possible imple-
mentation strongly motivates investigation of the model. In Sect. 2, we introduce
the optical model of computation. In Sect. 3, we outline some relevant points
from Type-2 Theory of Effectivity, and present our working view of Type-2 ma-
chines. In Sect. 4, we present our simulation of a Type-2 machine. We finish with
a discussion of its super-Turing power and a conclusion (Sects. 5 and 6).

M. Margenstern and Y. Rogozhin (Eds.): MCU 2001, LNCS 2055, pp. 288–299, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Computational Power of a Continuous-Space Optical Model of Computation 289

a b0 1 2 3

0

1

2

3

a b

(a) (b)

sta
sta

ld 2 3 1 3

Fig. 1. Schematics of (a) the grid memory structure of our model of computation,
showing example locations for the ‘well-known’ addresses a, b and sta, and (b) loading
(and automatically rescaling) a subset of the grid into grid element a. The program
ld 2 3 1 3 . . . hlt instructs the machine to load into default location a the portion
of the grid addressed by columns 2 through 3 and rows 1 through 3.

2 The Optical Computational Model

Each instance of our machine consists of a memory containing a program (an
ordered list of operations) and an input. The memory structure is in the form of
a 2-D grid of rectangular elements, as shown in Fig. 1(a). The grid has finite size
and a scheme to address each element uniquely. Each grid element holds a 2-D
infinite resolution complex-valued image. Three of these images are addressed
by the identifiers a, b, and sta (two global storage locations and a program start
location, respectively).

The two most basic operations available to the programmer, ld and st (both
parameterised by two column addresses and two row addresses), copy rectan-
gular m × n (m,n ∈ N, m,n ≥ 1) subsets of the grid into and out of image a,
respectively. Upon such loading and storing the image information is rescaled to
the full extent of the target location [as depicted in Fig. 1(b)]. Two additional
real-valued parameters zlower and zupper, specifying lower and upper cut-off val-
ues, filter the rectangle’s contents by amplitude before rescaling,

f(i, j) =




zlower : Re [f(i, j)] < zlower
zupper : Re [f(i, j)] > zupper .
f(i, j) : otherwise

For the purposes of this paper we do not require the use of amplitude filtering
and use an all-pass filter represented by the rationals 0/1 and 1/1 (we make use
of the symbol ‘/’ for this purpose). The complete set of atomic operations is
given in Fig. 2.

Each instance of our machine is a quintuple M = 〈D,L,Z, I, P 〉, in which
• D = 〈x, y〉 , x, y ∈ N : grid dimensions
• L = 〈ax, ay, bx, by, sx, sy〉 , a, b, s ∈ N : locations of a, b, and sta
• Z = 〈zMIN, zMAX, r〉 , z ∈ C, r ∈ Q : global amplitude bounds and ampli-

tude resolution of grid elements



290 Thomas J. Naughton and Damien Woods

ld c1 c2 r1 r2 zl zu : c1, c2, r1, r2 ∈ N; zl, zu ∈ Q; copy into a the rectangle
defined by the coordinates (c1, r1) and (c2, r2). (zl, zu) is
the amplitude filter [we use (0/0, 1/1) everywhere for the
purposes of this paper].

st c1 c2 r1 r2 zl zu : c1, c2, r1, r2 ∈ N; zl, zu ∈ Q; copy the image in a into the
rectangle defined by the coordinates (c1, r1) and (c2, r2).

h : perform a horizontal 1-D Fourier transform on the 2-D
image in a. Store result in a.

v : perform a vertical 1-D Fourier transform on the 2-D image
in a. Store result in a.

· : multiply (point by point) the two images in a and b. Store
result in a.

+ : perform a complex addition of a and b. Store result in a.
∗ : replace a with the complex conjugate of a.

br c1 r1 : c1, r1 ∈ N; unconditionally branch to the instruction at
the image with coordinates (c1, r1).

hlt : halt.

Fig. 2. The set of atomic operations permitted in the model.

• I = [(i1x, i1y, ψ1) , . . . , (inx, iny, ψn)] , i ∈ N, ψ ∈ Image : the n inputs and
their locations, where Image is a complex surface bounded by 0 and 1 in
both spatial directions and with values limited by Z

• P = [(p1x, p1y, π1) , . . . , (pmx, pmy, πm)] , p ∈ N, π ∈ {ld, st, h, v, ∗, ·, +,
br, hlt, /, N} ⊂ Image : the m programming symbols, for a given instance of
the machine, and each of their locations. N ∈ Image represents an arbitrary
row or column address.

As might be expected for an analog processor, its programming language
does not support comparison of arbitrary image values. Fortunately, not having
such a comparison operator will not impede us from simulating a branching
instruction (see Sect. 4). In addition, address resolution is possible since (i) our
set of possible image addresses is finite (each memory grid has a fixed size), and
(ii) we anticipate no false positives (we will never seek an address not from this
finite set).

3 Type-2 Theory of Effectivity

Standard computability theory [8] describes a set of functions that map from
one countably infinite set of finite symbol sequences to another. In “Type-2
Theory of Effectivity” (TTE) [9], ‘computation’ refers to processing over infinite
sequences of symbols, that is, infinite input sequences are mapped to infinite
output sequences. If we use two or more symbols the set of such sequences
is uncountable; TTE describes computation over uncountable sets and their
subsets. The following is a definition of a Type-2 machine as taken from [9].



Computational Power of a Continuous-Space Optical Model of Computation 291

A
T

Y1

Y0
Y2

read

write

read
write

read

write
read

write
C

B

Fig. 3. Our working view of a Type-2 machine: (T ) a halting TM; (Y0) the output tape;
(Y1) the input tape; (Y2) the nonvolatile ‘work tape’. Controls A, B , and C represent
the functionality to read from Y1, write to Y0, and read/write to Y2, respectively.

Definition 1. A Type-2 machine M is a TM with k input tapes together
with a type specification (Y1, . . . , Yk, Y0) with Yi ∈ {Σ∗, Σω}, giving the
type for each input tape and the output tape.

In this definition, Σ is a finite alphabet of two or more symbols, Σ∗ is the set of
all finite length sequences over Σ, Σω is the set of all infinite length sequences
over Σ. There are two possible input/output tape types, one holds sequences
from Σ∗ and the other from Σω.

Input tapes are one-way read only and the output tape is one-way write only.
If the output tape restriction was not in place any part of an infinite output would
not be guaranteed to be fixed as it could possibly be overwritten during a future
computation step. Hence, finite outputs from Type-2 computations are useful
for approximation or in the simulation of possibly infinite processes. A Type-
2 machine either finishes its computation in finite time with a finite number
of symbols on its output tape, or computes forever writing an infinite sequence.
Machines that compute forever while outputting only a finite number of symbols
are undefined in Type-2 theory [9].

3.1 A New View of Type-2 Computations

We maintain that a Type-2 machine can be viewed as a repeatedly instantiated
halting TM that has an additional (read-only) input tape Y1 and an additional
(write-only) output tape Y0. (Without loss of generality, the finite number of
input tapes from Def. 1 can be mapped to a single tape.) A nonvolatile ‘work
tape’ Y2 is used to store symbols between repeated instantiations (runs) of the
halting TM. This is illustrated in Fig. 3. T is the halting TM. Control A repre-
sents the functionality to read from Y1. Control B represents the functionality
to write to Y0. Control C represents the functionality to write to and read from
Y2.



292 Thomas J. Naughton and Damien Woods

A Type-2 computation will proceed as follows. The halting TM T is instan-
tiated at its initial state with blank internal tape(s). It reads a symbol from Y1.
Combining this with symbols (if any) left on Y2 by the previous instantiations,
it can, if required, write symbols on Y2 and Y0. T then halts, is instantiated once
more with blank internal tape(s), and the iteration continues. The computation
will either terminate with a finite sequence of symbols on the output tape or
compute forever writing out an infinite sequence. In this light, an infinite Type-
2 machine computation corresponds to an infinite sequence of instantiations of
a single halting TM (plus extra computation steps for controls A, B , and C ).

4 Simulation

We use simulation as a technique to measure computational power. If we can
show that machine M0 can simulate every operation that machine M1 performs,
we can say that M0 is at least as powerful as M1. Universality for our machine
has already been proved [5, 4] following Minsky’s arithmetisation of TMs [2]
(representing a TM in terms of quadruples of integers). Four images were used
to represent Minsky’s four registers. In this paper our TM simulation is more
efficient, reducing the number of required commands from 52 to 17. We refine
this TM simulation into a Type-2 machine simulation. Although straightforward,
these simulations are technically nontrivial. We were required to overcome the
restriction of no conditional branching in our model and to define an appropriate
view of Type-2 computations.

In general, a TM could be simulated by a look-up table and the two stacks
m and n, as shown in Fig. 4. A given TM [such as that in Fig. 4(a)] is written
in the imperative form illustrated in Fig. 4(b), where the simulation of state
changes and TM tape head movements can be achieved with two stacks and two
variables as shown in Fig. 4(c).

In order to simulate a stack we previously effected indirect addressing with a
combination of program self-modification and direct addressing. We also simu-
lated conditional branching by combining indirect addressing and unconditional
branching [5, 4]. This was based on a technique by Rojas [6] that relied on the
fact that our set of symbols is finite. Without loss of generality, in our simulation
we will restrict ourselves to three possible symbols, ‘0’, ‘1’ and a blank symbol
‘b’. Then, the conditional branching instruction “if (α=‘1’) then jump to address
X, else jump to Y ” is written as the unconditional branching instruction “jump
to address α”. We are required only to ensure that the code corresponding to
addresses X and Y is always at addresses ‘1’ and ‘0’, respectively (and that
we take into account the case where α =‘b’). In a 2-D memory (with an extra
addressing coordinate) many such branching instructions are possible.

4.1 Shorthand Conventions

To facilitate persons reading and writing programs, a shorthand notation is used
(see Fig. 6). In this shorthand, instead of having to specify exact addresses, we



Computational Power of a Continuous-Space Optical Model of Computation 293

q s s′ d q′

0 0 1 R 1
0 1 0 R 1
0 b b R 2
1 b b L 3

0: initial state
1: moving left
2: rejecting halt
3: accepting halt

q := initial state;
halt := false;
while (halt = false) {

select case (q, s) {
(0,0): fn(1,R,1);
(0,1): fn(0,R,1);
(0,b): fn(b,R,2);
(1,b): fn(b,L,3);
else: halt := true;

}
}

void fn(s’,d,q’) {
if(d = R) {

push(m,s’);
s := pop(n);

} else {
push(n,s’);
s := pop(m);

}
q := q’;

}

(a) (b) (c)

Fig. 4. Figure showing (a) an example TM table of behaviour. This machine flips the
binary value at its tape head and halts in an accepting state. If there is a blank at
its tape head it halts in a rejecting state; (b) an illustration of how an arbitrary TM
table of behaviour might be simulated with pseudocode; (c) how one might effect a
TM computation step with stacks m and n.

give images a temporary name (such as ‘x1’) and refer to the address of that
image with the ‘&’ character. So, when the programmer writes 5 st &y1 br 0 y1

0 1 2 3 4

(s)he would intend 5 st 13 13 5 5 0 / 1 1 / 1 br 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 where the blank

or undefined image at coordinates (13, 5) will be overwritten with the contents
of a before the statement to which it belongs is executed. Expansion from this
shorthand to the long-form programming language is a mechanical procedure
that could be performed as a ‘tidying-up’ phase by the programmer or by a pre-
processor. Unless otherwise stated, we assume that the global bounds on image
amplitude values are zMIN = 0 and zMAX = 1. The load and store operations
contain 0/1 (= 0) and 1/1 (= 1) for their zlower and zupper parameters, respec-
tively, indicating that the complete image is to be accessed. As a convention we
use underlining in program grid elements whose images can be modified by the
machine and italics to highlight points of TM termination within the grid.

4.2 Push and Pop Routines

Images can be stacked using a stepwise rescaling technique. Take an empty
image, representing an empty stack, and an image i to be pushed onto the
stack. Place both side-by-side with i to the left and rescale both into a single
grid element. This could be regarded as an image stack with one element. Take
another image, j, place it to the left of the stack and rescale both into a single
grid element once again. This single image is a stack with two elements. A pop
operation would involve stretching this stack over two grid elements. The left-
hand image will then contain a single image (j in this case) and the right-hand
image will contain the remainder of the stack. The stack can be repeatedly
rescaled over two images popping a single image each time.



294 Thomas J. Naughton and Damien Woods

An implementation of such a stack system in our model requires indirectly
addressing the stack and employing a third image (in addition to a and b) named
c. The low-level details are as follows. In advance of the push operation we ensure
that the column number of the stack is stored in a and the element to be pushed
is stored in c. (The column number is sufficient as all stacks will be located on
row 99 in Fig. 5.) The push routine begins by copying the contents of the stack
into b and moving c into a. Then both a and b are rescaled into a and stored
back in the stack’s original location. In advance of a pop operation we ensure
that the column number of the stack in question will be stored in a. The pop
routine begins by loading the stack into a and rescaling it over both a and b.
Image a now contains the top image and b contains the remainder of the stack.
The top element is temporarily stored in c, the contents of the stack stored back
in its original location, and the popped element returned to a before the routine
ends.

We use these routines to simulate the movement of the TM tape head as
illustrated in Fig. 4(c). The operational semantics of push and pop (including
the use of self-modification to load the contents of a stack into a) can be found
in rows 7 and 8 of Fig. 5.

4.3 Type-2 Machine Simulation

An arbitrary Type-2 machine is incorporated into our simulation as follows.
Firstly, transform the Type-2 machine into a Type-2 machine that operates over
our alphabet. Then rewrite the machine to conform to the form shown in Fig. 3.
For the purposes of this simulation we represent Y2 with TM T ’s internal tape
(essentially using the semi-infinite tape to the left of the tape head). When T
halts it will either be in an accepting or rejecting state. T ’s accepting state
is equivalent to the simulator’s initial state (i.e. T passes control back to the
simulator when it halts). At the simulator’s initial state it checks if T ’s tape
head was at a non-blank symbol when T halted. If so, it writes that symbol to
Y0. All symbols to the left of the tape head (essentially the contents of Y2) will
be retained for the next instantiation of T . Next, the simulator reads a symbol
from Y1 and writes it on T ’s tape in the cell being scanned by T ’s tape head.
It then passes control to T , by going into T ’s initial state. If at any time T
halts in a rejecting state we branch to the simulator’s halt state. In Fig. 5, we
simulate a specific example of a Type-2 machine that flips the bits of its binary
input. If the input is an infinite sequence it computes forever, writing out an
infinite sequence of flipped bits. If the input is finite it outputs a finite sequence
of flipped bits.

4.4 Explanation of Figs. 5 and 6

The Type-2 simulation by our model is shown in Fig. 5. It consists of two parts
(separated in the diagram for clarity). The larger is the simulator (consisting of
a universal TM, functionality A, B , and C from Fig. 3, and stacks Y1 and Y0).
A TM table of behaviour must be inserted into this simulator [the example TM



C
om

putational
P
ow

er
of

a
C

ontinuous-Space
O

ptical
M

odel
of

C
om

putation
295

m s n Y1 Y0 ‘0’ ‘1’ ‘b’ sta a b c

99 1 ∅ ∅ 4 ∅ 6 ? 8 ∅ 0 1 2 br 0 2 ∅ ∅ ∅
pop: 8 st &x1 st &x2 st &x3 st &x4 ld x1 x2 st ab st c ld b st x3 x4 ld c ret

psh: 7 st &x5 st &x6 st &x7 st &x8 ld x5 x6 st b ld c ld ab st x7 x8 ret

mvr: 6 Ph m Pp n st s ret

mvl: 5 Ph n Pp m st s ret

acc: 4 br 0 *s

rej: 3 hlt

2 Pp Y1 st s br qS 0

1 ld s Ph Y0 br 0 2 2 ‘b’ R q2 ‘b’ L q3 br rej

0 ld s Ph Y0 br 0 2 1 ‘0’ R q1 br acc

0 1 2 3 4 . . . 0 br q0 *s ‘1’ R q1 br acc

qS q0 q1 q2 q3

Fig. 5. Simulating Type-2 machines on our model of computation. The machine is in two parts for clarity. The larger
is a universal Type-2 machine simulator and the smaller is its halting TM table of behaviour. [The example TM we use
here is that in Fig. 4(a).] The simulator is written in a compact shorthand notation. The expansions into sequences of
atomic operations are shown in Fig. 6 and the simulation is explained in Sect. 4.4.



296 Thomas J. Naughton and Damien Woods

(a) Pp Y1 → ld Y1 br pop
Pp m → ld m br pop
Pp n → ld n br pop
Ph m → st c ld m br psh
Ph n → st c ld n br psh
Ph Y0 → st c ld Y0 br psh

(b) br q0 *s → ld s st &y1 br q0 y1
br 0 *s → ld s st &y2 br 0 y2

(c) ‘b’ R q2 → ld ‘b’ br mvr br q2 *s
‘0’ R q1 → ld ‘0’ br mvr br q1 *s
‘1’ R q1 → ld ‘1’ br mvr br q1 *s
‘b’ L q3 → ld ‘b’ br mvl br q3 *s

(d) ld Y1 → ld 5 5 99 99 0 / 1 1 / 1
ld Y0 → ld 7 7 99 99 0 / 1 1 / 1
ld m → ld 0 0 99 99 0 / 1 1 / 1
ld n → ld 3 3 99 99 0 / 1 1 / 1
st Y1 → st 5 5 99 99 0 / 1 1 / 1
st Y0 → st 7 7 99 99 0 / 1 1 / 1
st m → st 0 0 99 99 0 / 1 1 / 1
st n → st 3 3 99 99 0 / 1 1 / 1
ld s → ld 2 2 99 99 0 / 1 1 / 1
ld b → ld 21 21 99 99 0 / 1 1 / 1
ld c → ld 22 22 99 99 0 / 1 1 / 1
st s → st 2 2 99 99 0 / 1 1 / 1
st b → st 21 21 99 99 0 / 1 1 / 1
st c → st 22 22 99 99 0 / 1 1 / 1
ld ab → ld 20 21 99 99 0 / 1 1 / 1
st ab → st 20 21 99 99 0 / 1 1 / 1
ld ‘0’ → ld 9 9 99 99 0 / 1 1 / 1
ld ‘1’ → ld 10 10 99 99 0 / 1 1 / 1
ld ‘b’ → ld 11 11 99 99 0 / 1 1 / 1

(e) br pop → br 0 8
br psh → br 0 7
br mvr → br 0 6
br mvl → br 0 5
br acc → br 0 4
br rej → br 0 3

(f) st &x1 → st 9 9 8 8 0 / 1 1 / 1
ld x1 x2 → ld x1 x2 99 99 0 / 1 1 / 1
st x3 x4 → st x3 x4 99 99 0 / 1 1 / 1

Fig. 6. Time-saving shorthand conventions used in the simulator in Fig. 5. These are
explained in Sect. 4.4.



Computational Power of a Continuous-Space Optical Model of Computation 297

is from Fig. 4(a)]. It has a straightforward encoding. Notice how for each row of
the table of behaviour 〈q, s, s′, d, q′〉 an ordered triple 〈s′, d, q′〉 is placed at the
location addressed by coordinates (q, s).

Row 99 of Fig. 5 is the ‘well-known’ row containing stacks, constants and the
locations a, b, c, and sta. To permit indirect addressing, locations m, n, Y1,
and Y0 store the column numbers of their respective stacks. Y1 and Y0 represent
the one-way tapes from Fig. 3 (we pop from Y1 and push to Y0). The stack
m encodes all symbols on T ’s tape to the left of tape head, and the stack n
encodes all symbols on T ’s tape to the right of the tape head. Image s encodes
the symbol currently being scanned by T ’s tape head. The blank constant ‘b’ is
represented by ‘2’. Before execution begins, an input will have been encoded in
stack Y1, grid element (6, 99), in place of symbol ‘?’. Control flow begins at the
program start location sta, grid element (17, 99), and proceeds rightwards until
one of br or hlt is encountered.

In rows 7 and 8 we have the push and pop routines; these are explained in
Sect. 4.2. Rows 5 and 6, named mvl and mvr respectively, contain commands to
simulate moving left and right on T ’s tape. This is effected by a combination of
pushes and pops to the stacks m and n and image s that encode T ’s tape sym-
bols. The ‘ret’ command returns execution to the point from which a subroutine
mvl, mvr, psh, or pop was called. Rows 3 and 4 describe what is to happen
when the inserted TM halts in a rejecting or accepting state, respectively. In the
former case the Type-2 machine simulation halts. In the latter case, the TM is
reinstantiated in accordance with the description in Sect. 3.1. If the TM’s tape
head had written ‘0’ or ‘1’ as it halted, control flow then moves to row 0 or 1,
respectively, and the appropriate symbol is written to Y0 before instantiation.
If the tape head writes a ‘2’ (a blank) as it halted, control flow moves to row 2
and the TM is directly reinstantiated.

For our particular example inserted TM [from Fig. 4(a)] if it reads a ‘0’ or
‘1’ it halts in an accepting state and control moves to the beginning of row 4. If
the input to our simulation is finite, an instantiation will eventually read a blank
symbol, will enter state ‘q2’, and the Type-2 simulation will halt. Otherwise, it
will be repeatedly instantiated, each time flipping one bit.

The simulation is written in a shorthand notation (including shorthand ver-
sions of ld, st, and br from Fig. 2) which is expanded using Fig. 6. Figure 6(a)
shows the expansion of shorthand notation used in setting up calls to the psh
and pop routines (loading the appropriate stack address into a in advance of a
pop, and storing into c the symbol to be pushed and loading the stack address
into a in advance of a push). In advance of a psh the element to be pushed
will be in a. After a pop, the popped element will be in a. Figure 6(b) shows
commands for branching to an address where the row is specified by the symbol
currently scanned by T ’s tape head. Figure 6(c) shows routines for simulating
the execution of a row of T ’s table of behaviour. Commands for loading from
and storing to locations specified at runtime, and to/from the ‘well-known’ loca-
tions on row 99 are in Fig. 6(d). Figure 6(e) shows the commands for branching
to subroutines. Finally, Fig. 6(f ) illustrates how all labels are eventually given



298 Thomas J. Naughton and Damien Woods

absolute addresses by a preprocessor. After a first pass of the preprocessor (ex-
panding the shorthand) the modifiable (underlined) references are updated with
hardcoded addresses.

5 Super-Turing Capabilities of Our Model

Type-2 machines do not describe all of the computational capabilities of our
model. The model’s atomic operations operate on a continuum of values in con-
stant time (independent of input size) and would not have obvious TM or Type-2
machine implementations.

Consider the language L defined by its characteristic function f :Σω →{0, 1},
where

f(p) :=
{

1 : if p 
= 0ω

0 : otherwise

and where p is an infinite sequence over alphabet {0, 1}. This language is accept-
able but not decidable by a Type-2 machine [9] (Ex. 2.1.4.6). In our model, we
encode a boolean value in an image by letting a δ-function at its origin denote
a ‘1’ and an empty image (or an image with low background noise) denote a
‘0’. An infinite sequence of boolean-valued images could be presented as input
concatenated together in one image without loss of information (by definition,
images in our machine have infinite spatial resolution). An off-centre peak can be
centred for easy detection through Fourier transformation (using the shorthand
program ld Y1 h v st b ∗ · ). This uses the property that the term at the origin
of a Fourier transform of an image, the dc term, has a value proportional to the
energy over the entire image. Our model could therefore Fourier transform the
continuous input image and then measure the value of the dc term in unit time.
A peak would indicate that there is some energy (and therefore at least one ‘1’)
somewhere in the image; the corresponding word is in L. An absence of a peak
at the origin indicates that there is not a ‘1’ in the image; the corresponding
word is not in L.

6 Conclusion

We introduce an original continuous-space model of computation to the com-
puter science community. We show its relationship to existing theory by proving
that it is at least as powerful as the Type-2 machine model. We are currently in-
vestigating the relationship between our model and piecewise affine maps [1, 7].
As the model remains faithful to the theory of physical optics we propose that it
could serve as an implementation of Type-2 machines. Furthermore, the upper
bound on the computational power of this model is nontrivial and deserves to
be analysed. We present at least one problem, decidable by our model, that is
undecidable by a Type-2 machine. The model’s computational power, combined
with implementation possibilities, strongly motivates continued investigation.



Computational Power of a Continuous-Space Optical Model of Computation 299

Acknowledgements

We gratefully acknowledge advice and assistance from J. Paul Gibson and the
Theoretical Aspects of Software Systems research group, NUI Maynooth. Many
thanks also to the reviewers of this paper for their constructive comments.

References

1. P. Koiran, M. Cosnard, and M. Garzon. Computability with low-dimensional dy-
namical systems. Theoretical Computer Science, 132(1-2):113–128, 1994.

2. M.L. Minsky. Computation: Finite and Infinite Machines. Series in Automatic
Computation. Prentice Hall, Englewood Cliffs, New Jersey, 1967.

3. T. Naughton, Z. Javadpour, J. Keating, M. Kĺıma, and J. Rott. General-purpose
acousto-optic connectionist processor. Optical Engineering, 38(7):1170–1177, July
1999.

4. T.J. Naughton. A model of computation for Fourier optical processors. In Optics
in Computing 2000, Proc. SPIE vol. 4089, pp. 24–34, Quebec, June 2000.

5. T.J. Naughton. Continuous-space model of computation is Turing universal. In
Critical Technologies for the Future of Computing, Proc. SPIE vol. 4109, pp. 121–
128, San Diego, California, August 2000.

6. R. Rojas. Conditional branching is not necessary for universal computation in von
Neumann computers. J. Universal Computer Science, 2(11):756–768, 1996.

7. H.T. Siegelmann and E.D. Sontag. On the computational power of neural nets. In
Proc. 5th Annual ACM Workshop on Computational Learning Theory, pp. 440–
449, Pittsburgh, July 1992.

8. A.M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society ser. 2, 42(2):230–
265, 1936. Correction in vol. 43, pp. 544–546, 1937.

9. K. Weihrauch. Computable Analysis. Springer, Berlin, 2000.
10. D. Woods and J.P. Gibson. On the relationship between computational models and

scientific theories. Technical Report NUIM-CS-TR-2001-05, National University
of Ireland, Maynooth, Ireland, February 2001.


	1 Introduction
	2 The Optical Computational Model
	3 Type-2 Theory of Effectivity
	3.1 A New View of Type-2 Computations

	4 Simulation
	4.1 Shorthand Conventions
	4.2 Push and Pop Routines
	4.3 Type-2 Machine Simulation
	4.4 Explanation of Figs. 5 and 6

	5 Super-Turing Capabilities of Our Model
	6 Conclusion
	References

