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Abstract. Stable storage can be seen as an ideal storage medium that, given a
set of failure assumptions, protects user data from corruption or loss. The integ-
rity of the stored data must be guaranteed even in the presence of crash failures.
In this paper, we show how to realize stable storage using a technique called
mirroring. The main idea is to write the data to two locations instead of one, in
a sequential order. If one write operation fails, the technique ensures that the
other copy is in a consistent state. It may be the state that was valid before the
write operation, or it may already be the new one. Of course, there must be
some mechanism to determine which one is correct. The purpose of the paper is
therefore to describe the mirroring algorithm, and to present a state automaton
covering all possible situations that can occur in the case of crash failures. Fi-
nally, an implementation in Ada 95 is presented.

Keywords. Memory Management, Mirroring, Shadowing, Stable Storage, Fault
Tolerance, Ada 95.

1 Introduction

The concept of Stable Storage has its origins in the realm of transactions and data-
bases. A stable storage unit can be seen as an ideal storage medium that, given a set of
failure assumptions, protects user data from corruption or loss. Such a storage unit
offers two operations to the user, Write and Read, which can be used to store and
retrieve user data to and from stable storage.

The name of ‘stable storage’ has been first introduced in [1]. The paper describes
how conventional disk storage, that shows imperfections such as bad write operations
or decay, can be transformed into an ideal disk with no failures using a technique
called mirroring. In this paper, we present this technique and show how to convert
any nonvolatile storage into stable storage.

Stable storage guarantees atomicity of the write operation, e.g. either all data is
written to the storage unit, or none at all, even in the case of a crash. So a write op-
eration appears as indivisible. As a result, a read operation will always return consis-
tent data. However, the user of a stable storage unit has to design the application in
such a way that, after recovering from a crash failure, it can deal with the system
either in the old or in the new state without knowing which one holds.
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The remainder of this paper is organized as follows: the next section describes
mirrored storage and the related algorithms. Section 3 shows how to integrate mir-
rored storage into a storage hierarchy, how it can be implemented in Ada 95, and how
to use it. A conclusion and references complete the paper.

2 The Mirroring Algorithm

In specialized literature, the “mirroring” technique, sometimes called “shadowing”,
often refers to duplication of data. For example, the Ralston Encyclopedia of Com-
puter Science [2] says:

Another recent trend is to duplicate data to enhance reliability. This
technique, called mirroring or shadowing, allows systems to con-
tinue operation in spite of media, controller, or channel failure. So-
phisticated systems also take advantage of the extra I/O path to en-
hance throughput. On-line reconstruction (“re-mirroring”) of a new
second copy when one of the original two is lost is also common.

The main idea is to write data in two locations instead of one, in a sequential
order. If one write operation fails, we assume that the other copy is in a consistent
state. It may be the state that was valid before the write operation, or it may already be
the new one. Of course, there must be a mechanism to determine which one of the
two copies contains the valid data. For this purpose, a third storage unit called the log
is used. It allows us to distinguish between the three possible situations depending on
the moment of the crash:

• The crash happens before or after
the write operation, i.e. the log does
not indicate any problem,

• The crash happens while writing the
first copy, or

• The crash happens while writing the
second copy.

The three components used for the
algorithm are shown in fig. 1. The data
copies are called A and B.

Mirroring can be used for instance in a transactional system in order to keep uncor-
rupted a log table mapped on sequential files, as explained in [3].

2.1 Preliminary Assumptions
Before describing the mirroring algorithm, we have to specify our failure assumptions
i.e. under which conditions we can guarantee the stability of the storage unit.

Fig. 1. Components  of a  Stable  Storage
Unit based on Mirroring (UML notation)

Mirrored Storage Unit

1Log : Non-Volatile Storage Unit

1A : Non-Volatile Storage Unit

1B : Non-Volatile Storage Unit
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If any of the storage units used for storing the log and the data copies does not
meet one or more of the following assumptions, then the resulting mirrored stor-
age unit can not be considered stable.

Non-volatile Storage. The storage units used for holding the log and the two data
copies must be non-volatile, i.e. they must retain their contents even in the case of a
crash failure.

Failure Isolation. Our main assumption is that a crash while executing a write opera-
tion on a storage unit can only corrupt the contents of that particular storage unit, and
no other data stored on the same device or another device.

Non-destructive Reads. Reading from storage will not corrupt the data, even in the
presence of crash failures.

Unbuffered Writes. Our algorithm is composed of sequential write operations to the
log and data copies. It is essential for the correct working of the mirroring algorithm
that when a new write operation begins, the previous one has been completed success-
fully. This assumption may not be met if the storage device uses buffering or caching
that writes physically to the device only when the buffer is full. However, such de-
vices often offer a flush operation that forces the buffer to be written out to the device.
This operation must therefore be called after every write.

Error-free Reading and Writing. We assume that the storage units holding the two
data copies and the log provides error-free read and write operations. For the inter-
ested reader, more information on how to construct a higher-level abstraction to han-
dle read and write errors can be found in [1].

2.2 Write and Read Operations

Mirrored Write Operation. The algorithm of the mirrored write operation is sum-
marized in fig. 2. The initial value of the log is OK.

1. Set Log to A (i.e. writing to A)

2. Write the data to A

3. Set Log to B (i.e. writing to B)

4. Write the data to B

5. Set Log to OK

Fig. 2. Mirrored Write Operation

We can illustrate this algorithm with a state automaton (fig. 3). Each state is com-
posed of three values: the value in the log and the two data copies. The log can take
the values OK (in short O), A and B. The data copies can be in the states P or N,
where P, respectively N, means that the copy is still in the previous, respectively al-
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ready in the new state. The initial state is therefore O | P | P, the final state O | N | N.
Each arrow between two states means writing to a storage.

Mirrored Read Operation. The mirrored read operation is just a normal read of any
of the two copies, since they are identical after a successful write operation.

2.3  Handling Crashes

The sequence of the state automaton (fig. 3) can be
interrupted at any time by a crash failure. Accord-
ing to our preliminary assumptions, the storage unit
that is open in write mode at that moment may get
corrupted. Upon restart, before executing any I/O
operation, we must check the consistency of the
mirrored storage. We never check the contents of
the data copies itself, only the log. If the log is not
set to OK, we have to perform a cleanup operation.

Cleanup Operation. According to our preliminary
assumptions only one storage unit can be corrupted
by a crash at any given time. The table in fig. 4
summarizes the required cleanup operations based
on the information found in the log.

Second Level Crash Failures. We have to pay
special attention to new crash failures happening
during cleanup, since we always must keep at least
one valid data copy. Since we only read the valid
copy, our failure assumptions guarantee that it will
not get corrupted. When a crash occurs there are
two possible cases:
• If the new crash happens while repairing a

suspected data copy, then the log is un-
changed.

• If the new crash happens while resetting the
log to OK, then we have successfully repaired
the suspected data copy but we cannot know it
because the log is corrupted.

In both cases we perform a complete cleanup op-
eration when restarting.
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Write to A
(1st copy)

Set Log to B

Write to B
(2nd copy)

 Reset Log
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State of Log Suspected Problem Cleanup

OK None. None.

A  (i.e. writing to A) A was not successfully written
and might be corrupted.

Copy B to A.
Set Log to OK.

B  (i.e. writing to B) B was not successfully written
and might be corrupted.

Copy A to B.
Set Log to OK.

X  (i.e. corrupted) Neither A nor B is corrupted,
but they might contain differ-
ent data.

Copy A to B  (or
B on A).
Set Log to OK.

Fig. 4. Cleanup Operation Summary

2.4 State Automaton Describing the Cleanup Algorithm
To verify that our algorithm safely covers all cases, we can represent the complete
mirroring algorithm (write and cleanup operation) by a state automaton shown in
fig. 5. In addition to being in a normal state, a storage unit can also be corrupted,
which is represented by the symbol X. The question mark stands for different possible
cases, depending on the damage created by the crash.

We can distinguish four vertical columns in the automaton, each one representing
a different kind of system state:

1. Normal states: the left vertical column of states represents the normal sequence
of write operations in the absence of crash failures.

2. Crash states: the states of the second column can only be reached after at least
one crash failure. After every new crash, we must restart in one of these states.
One or two storage units might be corrupted depending on the number of previ-
ous crash failures, but at least one of the data copies is not corrupted.

3. Re-mirroring states: the third vertical column is reached when the “re-mirroring”
operation, i.e. the copy of one storage unit to the other, is successfully completed.

4. Final states: the last column consists of the two possible final states after a suc-
cessful cleanup operation: either O | P | P or O | N | N, the latter being the normal
consistent final state without any crash failure.

The Rubicon Property. There is clearly a separation, shown by a dashed line, be-
tween the upper and the lower part of the automaton. When a crash happens in the
upper part, the final state after recovery will be the one before calling the mirrored
write operation, i.e. O | P | P.  Otherwise (writing the first copy to A has been com-
pleted successfully), the mirrored write operation will succeed, i.e. the final state will
be O | N | N, even if still other crash failures occur.
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Unreadable Log and Uncertainty. After a crash, when the log can not be read, i.e.
the system is in one of the states X | P | ? or X | N | ?, there is uncertainty about its
actual state. However recovery can be performed because the actions to be taken in
both states are exactly the same, i.e. copy A to B and set the log to OK.

Normal
States

Crash
States

Re-Mirroring
States

Final
States

P  P  O

P  P  A

Set Log to A

Crash

Crash

Crash

Remirroring
A -> B

P  P  O

Crash

1?  P  X

Crash

Remirroring
B ->A

P  P  A

ResetLog

P  P  X

Res
et

Log

Crash

P  ?  A 1

Write to A
(1st Copy)

Crash

P  N  A

N  N  B

P  N  B

C
ra

sh

N  N  O

Set Log to B

Write to B
(1st Copy)

Reset Log

Crash

Crash

Remirroring
A -> B

N  N  OCrash

Remirroring
A -> B

N  N  B

ResetLog

N  N  X

Res
et

LogCrash

2?  N  X

Note: the symbol ? means that the storage
unit is in one of the following states  :
1: P or X
2: P or N or X

Crash

1
?NB

Fig. 5. State Automaton for the Mirroring Algorithm
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2.5 Time Needed for the Mirrored Write Operation
Using the automaton of fig. 5 and assigning probabilities to basic operations, we can
estimate the time needed to complete a mirrored write.

Time without Crash Failures. We suppose that the two storage units A and B are
attached to similar devices. According to our algorithm, the execution time of a mir-
rored write operation without any crash failure, i.e. the best time, is equal to:

tnormal =  3tl + 2td
(1)

where tl is the time needed to set the log, and td the time needed to write the data to A
or B.

Time with Crash Failures. To recover from a single crash, it takes the time trestart to
restart the application plus the time for one re-mirroring operation, i.e. td, plus the
time for one log reset, i.e. tl. However this is only an upper limit, because a crash
might occur before the re-mirroring operation is completed. Therefore, if n denotes
the total number of crash failures, the time spent in the state automaton is bound by:

tcrash <  tnormal + n( trestart+ tl + td ) (2)

Conclusion. If we consider that the time needed to set the log is negligible in com-
parison with the time needed to write a data copy, we can simplify the equation 1 to:

tnormal ≈  2td
(3)

It means that mirrored storage needs twice the time of conventional storage. With the
high speed of actual storage devices, this should be acceptable in most cases.

2.6 Transition Probabilities

Transition Matrix. Let’s denote by pl the probability that there is a crash while set-
ting the log, and pd the probability that there is a crash while writing a data copy. We
can then assign probabilities to the transitions of the state automaton of fig. 5. The
transition matrix is shown in Fig. 6. Rows and columns represent the states of the
automaton. The value in a cell is the probability to go from the state represented by
the row to the one associated with the column. Note that it is a Markov transition
matrix since the sum of the probabilities on a line is always 1, except for the final
states.

Probabilities for Final States. As said previously, there are two kinds of final states:
either O | P | P, which is the starting state, or O | N | N. We saw that if the automaton
succeeds in passing through the dashed line (fig. 5), the final state is O | N | N, and
otherwise it is O | P | P. Based on this observation, we can compute the probabilities
of the final states.
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P  P  O 0 1-pl pl 0 0 0 0 0 0 0 0 0 0 0 0 0

P  P  A 0 0 0 pd 0 0 0 1-pd 0 0 0 0 0 0 0 0

?  P  X 0 0 pd 0 1-pd 0 0 0 0 0 0 0 0 0 0 0

P  ?  A 0 0 0 pd 0 1-pd 0 0 0 0 0 0 0 0 0 0

P  P  A 0 0 pl 0 0 0 1-pl 0 0 0 0 0 0 0 0 0

P  P  O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P  N  A 0 0 0 0 0 0 0 0 1-pl pl 0 0 0 0 0 0

P  N  B 0 0 0 0 0 0 0 0 0 0 pd 0 0 0 1-pd 0

?  N  X 0 0 0 0 0 0 0 0 0 pd 0 1-pd 0 0 0 0

?  N  B 0 0 0 0 0 0 0 0 0 0 pd 0 1-pd 0 0 0

N  N  X 0 0 0 0 0 0 0 0 0 pl 0 0 0 1-pl 0 0

N  N  B 0 0 0 0 0 0 0 0 0 pl 0 0 0 1-pl 0 0

N  N  O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N  N  B 0 0 0 0 0 0 0 0 0 pl 0 0 0 0 0 1-pl

N  N  O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 6. Transition Matrix for the Mirroring State Automaton

1. To finish in the state O | N | N, the dashed line must be crossed. The unique pos-
sibility is to go directly from O | P | P to A | P | P (with a probability 1-pl ) and
then directly from A | P | P to A | N | P (with a probability 1-pd ):

PO/N/N  =  (1-pl ) . (1-pd ) (4)

2. Because the mirroring algorithm guarantees to finish in one of the two kinds of
final states, the probability to finish back in the state O | P | P is the complement
to 1 of the previous probability:

                              PO/P/P  =  1− PO/N/N

                           ⇔   PO/P/P  =  1− (1− pl) . (1− pd )
                           ⇔   PO/P/P  = 1− (1− pl − pd + pl .pd )

                           ⇔   PO/P/P  = pl + pd − pl .pd (5)

3 Implementation in Ada 95

We want to be able to write the state of any object to our storage. Ada streams can be
used for that purpose [4]. A stream is a sequence of elements comprising values of
possibly different types. The standard package Ada.Streams defines the interface for
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streams in Ada 95. It declares an abstract type Root_Stream_Type, from which all
other stream types must derive.

In Ada 95, the predefined attributes ’Write  and ’Output  are used to write val-
ues to a stream by converting them into a flat sequence of stream elements. Recon-
structing the values from a stream is performed with the predefined attributes ’Read
and ’Input . These two attributes make dispatching calls to the Read and Write
operations of the Root_Stream_Type . With ’Write  and ’Read , neither array
bounds nor tags of tagged types are written to or read from the stream. ’Output  and
’Input  must be used for that purpose.

[5], [6] construct a framework for providing persistence for Ada objects based on
streams. It classifies storage devices in a class hierarchy according to essential prop-
erties, like volatility, stability, etc. The abstract root class Storage (fig. 7) defines the
common interface for all storage classes, including Read and Write operations. The
storage hierarchy is then split into volatile and non-volatile storage. Data stored in
non-volatile storage remain intact even when the program terminates. Among the
different types of non-volatile storage, there is then the distinction between stable and
non-stable storage. The mirrored storage finally is a subclass of the stable storage
class.

For storing the log and the data copies, we need non-volatile storage units, but the
mirroring algorithm is independent of the kind of non-volatile storage actually used.

Using the Strategy design pattern [7], we can implement a mirrored storage class,
whose instances are supplied with parameters at creation time. These parameters
specify the kinds of non-volatile storage the application programmer chooses, de-
pending on the needs of the application. To help him make this choice, a concrete
non-volatile storage class must document any applicable constraints and provide in-
formation about the performance of its instances. E.g. the log is frequently accessed,
but holds only a small piece of information, to the contrary of the data copies.

The structure of the collaboration is shown in fig. 7. The class is an aggregation
of three non-volatile storage objects (Log, A and B). The specific kinds of these three
objects are chosen when creating an object of the mirrored storage class. It is there-
fore possible to reuse concrete implementations of the non-volatile storage class to
create a variety of mirrored storage devices.
Storage Parameters. Because we want to provide persistent storage, there must be
some means to uniquely identify storage objects. Storage identification is usually
device dependent. Files for instance have file names associated with them, but other
storage devices may use different identification means. In order to provide correct
identification for each storage type, a parallel hierarchy of storage parameter classes
has been introduced. A concrete parameter class contains the necessary identification
data for a particular storage device. Each parameter class must also provide operations
to convert the parameter to and from a string. This string will be used as a common,
device-independent means for identifying storage objects.

3.1 Implementation Details
The mirroring class is defined as follows:
type Mirrored_Storage_Type is new Stable_Storage_Type with private;
type Mirrored_Storage_Ref is access all Mirrored_Storage_Type’Class;
... --  Usual operations declarations for non-volatile storage
... --  Read, Write, Get_Current_Size, Open, Close, Delete
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private
type Mirrored_Members_Type is new Limited_Controlled

with record
Log : Non_Volatile_Storage_Ref;
B : Non_Volatile_Storage_Ref;
A : Non_Volatile_Storage_Ref;

end record;

procedure Finalize (Members : in out Mirrored_Members_Type);

type Mirrored_Storage_Type is new Stable_Storage_Type
with record

Members : Mirrored_Members_Type;
end record;

Storage_Type
Read()
Write()
Get_Current_Size()

3
Volatile_Storage_Type Non_Volatile_Storage_Type

Open()
Close()
Delete()

Non_Stable_Storage_Type

File_Storage_Type
Create ()

Stable_Storage_Type

Mirrored_Storage_Type
Create (Log,A,B: Non_Volatile_Storage_Type)

Fig. 7. Mirroring in the Storage Hierarchy

First of all, note how we declare the three components Log, A and B as refer-
ences to the non-volatile storage class-wide type Non_Volatile_Storage_Ref. It
means that the implementation does not rely on any specific type of non-volatile stor-
age.
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Deriving the members of the mirrored storage from a controlled type�allows one
to deallocate the three non-volatile storage components in the Finalize procedure.
In this way, we ensure that the three storage components are released when the mir-
rored storage is deleted.

3.2 Example of Use
The example shows how to save integers to a mirrored storage unit.

with Mirrored_Storage_Params; use Mirrored_Storage_Params;
with Mirrored_Storages; use Mirrored_Storages;
with Streams; use Streams;

procedure Save_Integer is
My_Params : Mirrored_Storage_Params_Type;
My_Storage : Mirrored_Storage_Ref;
My_Stream : Stream_Ref;

begin
My_Params := String_To_Storage_Params ("AdaEurope");
My_Storage :=

Mirrored_Storage_Ref (Create_Storage (My_Params));
My_Stream := new Stream_Type (My_Storage);
Integer’Write (My_Stream, 6577);
Close (My_Storage.all);

end Save_Integer;

The package Streams contains the type Stream_Type. A new instance of a stream
is associated with a storage object at creation time, as shown in the code. The attribute
‘write  makes a dispatching call to the write operation of the associated storage ob-
ject.

4 Conclusion

We proposed a technique called mirroring to convert non-volatile storage into stable
storage. A stable storage unit can be seen as an ideal storage medium that, given a set
of failure assumptions, protects user data from corruption or loss in the presence of
crash failures. The technique uses two data storage units instead of one, completed by
a log that indicates if data was corrupted during the crash needing cleanup.

The algorithm can be represented by a state automaton showing that all cases of
even multiple crash failures can be handled. Based on the state automaton we estab-
lished upper limits for the time behavior. We also showed how to assign probabilities
to the transitions and estimate the probability of reaching the final state.

The mirrored storage can easily be integrated in a storage hierarchy, transforming
any non-volatile, non-stable storage (e.g. a local file) into stable storage. This design
was successfully implemented in Ada 95, but the technique does not rely on any spe-
cific feature of the programming language.
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