
Transaction Support for Ada

Abstract. This paper describes the transaction support framework OPTIMA and
its implementation for Ada 95. First, a transaction model that fits concurrent pro-
gramming languages is presented. Then the design of the framework is given.
Applications from many different domains can benefit from using transactions;
it is therefore important to provide means to customize the framework depend-
ing on the application requirements. This flexibility is achieved by using design
patterns. Class hierarchies with classes implementing standard transactional
behavior are provided, but a programmer is free to extend the hierarchies by
implementing application-specific functionalities. An interface for Ada pro-
grammers is presented and its use demonstrated via a simple example.

Keywords. Transactions, Open Multithreaded Transactions, OPTIMA Frame-
work, Design Patterns, Fault-Tolerance, Ada 95.

1 Introduction

Ada [1] has a strong reputation for its error-prevention qualities, such as strong typing,
modularity, and separate compilation; it has been extensively used for the development
of mission-critical and safety-critical software. It is not surprising that there has also
been various research in the fault-tolerant area, such as providing replication for Ada
95 partitions [2].

Ada also provides support for lightweight and heavyweight concurrency (tasks and
partitions). But among these active entities, concurrency control and synchronization
are reduced to single method, procedure or entry calls (protected objects, rendezvous).
These mechanisms are adequate to build small-scale applications where tasks and their
synchronization are designed together. However, these mechanisms do no scale well
(e.g. several method calls can not be executed as one atomic operation). Complex sys-
tems often need more elaborate features that can span multiple operations.

Transactions [3] are such a feature. A transaction groups an arbitrary number of
simple actions together, making the whole appear indivisible with respect to other con-
current transactions. Using transactions, data updates that involve multiple objects can
be executed without worrying about concurrency. Transactions have the so-called

Jörg Kienzle1, Ricardo Jiménez-Peris2, Alexander Romanovsky3, M. Patiño Martinez2

1 Software Engineering Laboratory
Swiss Federal Institute of Technology Lausanne

CH - 1015 Lausanne EPFL
Switzerland

Joerg.Kienzle@epfl.ch

2 Facultad de Informática
Universidad Politécnica de Madrid

E - 28660 Boadilla del Monte, Madrid
Spain

{rjimenez,mpatino}@fi.upm.es
3 Department of Computing Science

University of Newcastle
NE1 7RU, Newcastle upon Tyne

United Kingdom
Alexander.Romanovsky@newcastle.ac.uk

ACID properties: Atomicity, Consistency, Isolation and Durability. If something unex-
pected happens during the execution of a transaction that prevents the operation to con-
tinue, the transaction is aborted, which will undo all state changes made on behalf of
the transaction. The ability of transactions to hide the effects of concurrency and at the
same time act as firewalls for failures makes them appropriate building blocks for
structuring reliable distributed systems in general.

This paper presents a framework called OPTIMA (OPen Transaction Integration
for Multithreaded Applications) that provides transaction support for Ada 95. The next
section introduces a new transaction model that fits our needs; section 3 outlines how
an Ada programmer should interface with our transaction service; section 4 presents
the design of the framework that provides support for open multithreaded transactions;
section 5 presents an example program and the last section draws some conclusions
and presents future work.

2 Open Multithreaded Transactions

When introducing transactions into a concurrent programming language such as the
Ada language, it is important to support concurrency inside a transaction in a natural
way. In Ada, a task can terminate or fork another task at any time. This section pre-
sents a new transaction model named Open Multithreaded Transactions. For a com-
plete description of the model see [4]. It allows tasks to join an ongoing transaction at
any time. Tasks can also be forked and terminated inside a transaction. There are only
two rules that restrict task behavior:

 • It is not allowed for a task that has been created outside a transaction to terminate
inside the transaction.

 • A task created inside a transaction must also terminate inside this transaction.

Exceptions [5], a standard Ada feature, are also integrated into the model. Transactions
are atomic units of system structuring that move the system from a consistent state to
some other consistent state if the transaction commits. Otherwise the state remains
unchanged. The exception mechanism is typically used to signal foreseen and unfore-
seen errors that prevent an invoked operation from completing successfully. Excep-
tions are events that must be handled in order to guarantee correct results. If such a
situation is not handled, the application data might be left in an inconsistent state.
Aborting the transaction and thus restoring the application state to the state it had had
before the beginning of the transaction will guarantee correct behavior. For this reason
we have decided that unhandled exceptions crossing the transaction boundary result in
aborting the open multithreaded transaction [6, 7].

The following rules describe open multithreaded transactions in detail. Tasks work-
ing on behalf of a transaction are referred to as participants. External tasks that create
or join a transaction are called joined participants; tasks created inside a transaction by
a participant are called a spawned participants. The data that can be modified from
inside a transaction is stored in so called transactional objects. The transaction support
guarantees the ACID properties for this data. Participants of a transaction collaborate
by accessing the same transactional objects.

Starting Open Multithreaded Transactions
 • Any task can start a transaction. This task will be the first joined participant of the

transaction. A newly created transaction is open.

 • Transactions can be nested. A participant of an open multithreaded transaction can
start a new (nested) transaction. Sibling transactions can execute concurrently.

Joining Open Multithreaded Transactions
 • A task can join a transaction as long as it is still open, thus becoming a joined par-

ticipant. To do this it has to learn (at run-time) or to know (statically) the transac-
tion context or the identity of this transaction.

 • A task can join a top-level transaction if and only if it does not participate in any
other transaction. To join a nested transaction, a task must first join all parent trans-
actions. A task can only participate in one sibling transaction at a time.

 • A task spawned by a participant automatically becomes a spawned participant of
the transaction in which the spawning task participates. A spawned participant can
join a nested transaction, in which case it becomes a joined participant of the
nested transaction.

 • Any participant of an open multithreaded transaction can decide to close the trans-
action at any time. Once the transaction is closed, no new joined participants are
accepted anymore. If no participant closes the transaction explicitly, it closes once
all participants have finished.

Concurrency Control in Open Multithreaded Transactions
 • Participant accesses to transactional objects inside a transaction are isolated with

respect to other transactions. The only visible information that might be available
to the outside world is the transaction identity to be used by tasks willing to join it.

 • Accesses of child transactions are isolated with respect to their parent transaction.

 • Classic consistency techniques are used to guarantee consistent access to the trans-
actional objects by participants of the same transaction.

Ending Open Multithreaded Transactions
 • All transaction participants vote on the outcome of the transaction. After that they

do not execute any application activity inside this transaction anymore. Possible
votes are commit or abort.

 • The transaction commits if and only if all participants vote commit. In that case,
the changes made to transactional objects on behalf of the transaction are made vis-
ible to the outside world. If any of the participants votes abort, the transaction
aborts. In that case, all changes made to transactional objects on behalf of the trans-
action are undone.

 • Once a spawned participant has given its vote, it terminates immediately.

 • Joined participants are not allowed to leave the transaction (they are blocked) until
the outcome of the transaction has been determined. This means that all joined par-
ticipants of a committing transaction exit synchronously. Only then, the changes
made to transactional objects are made visible to the outside world. If the transac-

tion is aborted, the joined participants may exit asynchronously, once changes
made to the transactional objects have been undone.

 • If a task participating in a transaction disappears without voting on the outcome of
the transaction (a deserter task), the transaction is aborted.

Exceptions and Open Multithreaded Transactions
 • Each participant has a set of internal exceptions that it can handle inside the trans-

action and a set of external exceptions which it can signal to the outside, when
needed. An additional external exception Transaction_Abort is always included
in the set of external exceptions.

Internal Exceptions
 • Inside a transaction each participant has a set of handlers, one for each internal

exception that can occur during its execution.

 • The termination model is adhered to: after an internal exception is raised in a par-
ticipant, the corresponding handler is called to handle it and to complete the partic-
ipant’s activity within the transaction. The handler can signal an external exception
if it is not able to deal with the situation.

 • If a participant "forgets" to handle an internal exception, the external exception
Transaction_Abort is signalled.

External Exceptions
 • External exceptions are signalled explicitly. Each participant can signal any of its

external exceptions.

 • Each joined participant of a transaction has a containing exception context.

 • When an external exception is signalled by a joined participant, it is propagated to
its containing context. If several joined participants signal an external exception,
each of them propagates its own exception to its own context.

 • If any participant of a transaction signals an external exception, the transaction is
aborted, and the exception Transaction_Abort is signalled to all joined partici-
pants that vote commit.

 • Because spawned participants don not outlive the transaction, they cannot signal
any external exception except Transaction_Abort, which results in aborting the
transaction.

3 Ada Interface

The support for open multithreaded transactions in Ada has been implemented in form
of a library, without introducing any language changes. This approach has many
advantages. It allows us to stay within the standard Ada language, hence making our
approach useful for any settings and platforms which have standard Ada compilers and
run-times. On the other hand, it requires the application programmer to adhere to cer-
tain programming guidelines in order to guarantee correct handling of transactions.

Our transaction support must be called at the beginning (procedure
Begin_Transaction or Join_Transaction) and end of every transaction (procedure
Commit_Transaction or Abort_Transaction). When a transaction is started, the call-

ing task is linked to the transaction using the package Ada.Task_Attributes, which
offers the possibility to declare data structures for which there is a copy for each task in
the system. From that moment on, the transaction support can always determine on
behalf of which transaction a task is executing its operations.

In order to correctly handle exceptions, a programmer
must associate a transaction with an Ada block state-
ment. Using the procedural interface described above,
the code of a transaction must look like the code pre-
sented in figure 1. Internal exceptions can be handled
in the exception section, and if the handling is suc-
cessful, the transaction can still commit. Any unhan-
dled exception crossing the block boundary will cause
the transaction to abort.
To avoid forgetting to vote on the outcome of a trans-
action and at the same time force the programmer to

declare a new block for each transaction, an interface based on controlled types can be
used as shown in figure 2.

What is important here is that the Ada block con-
struct is at the same time the transaction and the
exception context. Declaring the transaction object
calls the Initialize procedure of the transaction
type, which on its part calls the transaction support
and starts a new transaction. The task can now work
on behalf of the transaction. In order to commit the
transaction, the Commit_Transaction procedure
must be called before exiting the block. If a program-
mer forgets to commit the transaction, or if an unhan-
dled exception crosses the block boundary, the transaction object is finalized. From
within the Finalize procedure, Abort_Transaction is called.

The state of an application using the transaction support will be stored in a set of
data objects. Our transaction service must also be called before and after every opera-
tion invocation on such a data object. This can be automated by writing a wrapper
object (a proxy) offering the same interface as the data object, thus transforming it into
a transactional object. The implementations of the operations in the transactional
object will call the transaction support, and only then invoke the real operations on the
data object.

If writing a proxy object for each data object, and adhering to the programming
conventions mentioned earlier is too much of a burden for an application programmer,
she/he can opt to use Transactional Drago [8], which is an extension to Ada that intro-
duces transactions into the language itself. One of the advantages of having linguistic
support is that many programming errors can be detected at compilation time (e.g. cor-
rect nesting of transactions). Concurrency control is automatically set in Transactional
Drago. Therefore, transactions are programmed just as any other piece of code. The
only thing the programmer needs to do is to enclose the transaction code within a
transactional block statement.

begin
Begin_Transaction;
-- perform work
Commit_Transaction;

exception
when ...

-- handle internal
-- exceptions
Commit_Transaction;

when others =>
Abort_Transaction;
raise;

end;

Fig. 1: Procedural Interface

declare
T : Transaction;

begin
-- perform work
Commit_Transaction;

exception
when ...
-- handle internal
-- exceptions
Commit_Transaction;

end;

Fig. 2: Interface based on
Controlled Types

4 The OPTIMA Framework

A framework providing support for open multithreaded transactions must allow tasks
working on behalf of transactions to access transactional objects in a consistent man-
ner, guaranteeing the transactional ACID properties.

The design of the framework is a further development of our previous work
described in [9]. It makes heavy use of design patterns in order to maximize modular-
ity and flexibility. Using object-oriented programming techniques it can be easily cus-
tomized and tailored to specific application needs. The design of the framework can be
broken into three important components, namely transaction support, concurrency
control and recovery support.

4.1 Transaction Support

The transaction support is responsible of keeping track of the lifetime of an open mul-
tithreaded transaction. For each transaction, it creates a transaction object that holds
the transaction context containing the following data:

 • The status of the transaction (open, closed, aborted, committed),

 • The current number of participants, their identity and their status (joined partici-
pant, or spawned participant),

 • A list of subtransactions, and a reference to the parent transaction, if there is one,

 • A list of all transactional objects that have been accessed from within the open mul-
tithreaded transaction.

When a participant votes on the outcome of an open multithreaded transaction, the
transaction support is notified. If a joined participant votes commit, and there are still
other participants working on behalf of the transaction, the calling task is suspended.
Only in case of an abort, or if all participants have voted commit, the transaction sup-
port passes the decision on to the recovery support.

4.2 Concurrency Control

The main objective of the concurrency control support is to handle the cooperative and
competitive concurrency in open multithreaded transactions. Dealing with competitive
concurrency comes down to guaranteeing the isolation property for each transaction.
Transactions running concurrently are not allowed to interfere with each other; partici-
pants of a transaction access transactional objects as if they were the only tasks execut-
ing in the system. Handling cooperative concurrency means ensuring data consistency
despite concurrent accesses to transactional objects by participants of the same trans-
action.

These problems can be solved by synchronizing the accesses to transactional
objects made by tasks participating in some transaction. Providing consistency among
participants of the same transaction requires that operations that update the state of the
transactional object execute with mutual exclusion. Competitive concurrency control
among concurrent transactions can be pessimistic (conservative) or optimistic (aggres-
sive), both having advantages and disadvantages. In any case, the serializability of all
transactions must be guaranteed.

The principle underlying pessimistic concurrency control schemes is that, before
attempting to perform an operation on any transactional object, a transaction has to
get permission to do so. If a transaction invokes an operation that causes a conflict,
the transaction is blocked or aborted. Read/write locks are common examples of pes-
simistic concurrency control.

In optimistic concurrency control
schemes [10], transactions are allowed
to perform conflicting operations on
objects without being blocked, but
when they attempt to commit, the trans-
actions are validated to ensure that they
preserve serializability. If a transaction
is successfully validated, it means that it
has not executed operations that conflict
with the operations of other concurrent
transactions. It can then commit safely.

The common interface for concur-
rency control is shown in the abstract
class Concurrency_Control in figure 3. The Pre_ and Post_Operation operations
must be called before (resp. after) executing any operation on a transactional object.

A call to Pre_Operation comprises two phases. First, competitive concurrency
must be handled. In optimistic concurrency control schemes based on timestamps for
instance, Pre_Operation must remember the invocation time of the operation. In a
pessimistic scheme based on locking, the calling task must acquire the lock in order
to proceed with the operation. If the lock is not compatible with all other locks
granted for this transactional object, the calling task is suspended.

The second phase deals with cooperative concurrency. In both concurrency con-
trol schemes, Pre_Operation will acquire the mutual exclusion lock to access the
transactional object. This is needed to guarantee consistent access to the data among
participants inside an open multithreaded transaction. Post_Operation releases the
mutual exclusion lock again, but does not discard the competitive concurrency con-
trol information (i.e. discarding the timestamps, or releasing the transaction locks).
In general, information about the competitive concurrency control must be kept at
least until the outcome of the transaction is known.

When the transaction support is ready to commit a transaction, the Validate

operation is called for each accessed transactional object. In optimistic concurrency
control schemes, Validate verifies that there the serializability property has not
been violated. If this has happened, the transaction will abort. For pessimistic con-
currency control schemes, Validate always succeeds.

Optimistic and pessimistic concurrency control schemes must be able to decide if
there are conflicts between operations that would compromise the serializability of
transactions. They must also know if an operation modifies the state of the transac-
tional object.

This is what the operation information hierarchy shown in figure 4 is there for.
For each operation of a transactional object, an operation information object must be

Fig. 3: Concurrency Control

Concurrency_Control

Pre_Operation
Post_Operation
Validate
Commit_Transaction

Optimistic_Control Pessimistic_Control

Abort_Transaction

Locking_Control

Validate

written providing the operations Is_Update and Is_Compatible. Is_Update is
needed for dealing with cooperative concurrency. It returns true if the operation modi-
fies the state of the transactional object. This determines if mutual exclusion is needed
among participants of the same transaction.

Is_Compatible is necessary for dealing with competitive concurrency. It must
determine whether an operation conflicts with the other operations available for this
transactional object with respect to transaction serializability.

Without knowledge of the semantics of
operations, one can easily see that update
operations conflict with each other, and
also with read operations. Read operations
however do not conflict with other read
operations, since they do not modify the
state of the transactional object. The oper-

ation information hierarchy contains a Read_Write_Info class that provides this
behavior. Inter-transaction concurrency can be increased if one knows more about the
semantics of the operation itself. For instance two invocations of an insert operation
that inserts an element into a set do not conflict with each other. They commute. An
application programmer can provide his own operation information class if she/he
wants to use commutativity-based concurrency control [11].

Once the outcome of a transaction has been determined by the transaction support,
the concurrency control is notified by means of the operations Commit_Transaction
or Abort_Transaction. When a transaction aborts, the collected information can be
discarded (timestamps, locks). When a transaction commits, the information must be
passed to the parent transaction (the parent transaction “inherits” the modifications
made on behalf of a nested transaction). Only when a top-level transaction commits,
the information can be discarded safely.

4.3 Recovery Support

The recovery support provides open multithreaded transactions with atomicity and
durability properties in spite of system failures. To achieve durability the state of trans-
actional objects is stored on a non-volatile storage device. Atomicity means that either
all modifications made on behalf of an open multithreaded transaction are reflected in
the state of the accessed transactional objects, or else none is.

The recovery support must therefore keep track of all the modifications that the
participants have made to transactional objects on behalf of a transaction. In order to
recover from a crash failure, this information, also called a transaction trace, must be
stored on some kind of storage, called a log, that will not be affected by the system
failure. That way, once the system restarts, the recovery support can consult the log
and perform the cleanup actions necessary to restore the system to a consistent state.
The information that must be written to the log depends on the chosen recovery strat-
egy, and the necessary cleanup actions depend on the strategy, the status of the transac-
tion and whether the modifications made to the transactional objects have already been
propagated from the cache to the non-volatile storage unit or not.

Fig. 4: Operation Information

Operation_Information

Read_Write_Info User_Defined_Info

Is_Update
Is_Compatible

The essential components of the recovery support are the Persistence_Support, the
Cache_Manager, the Recovery_Manager and the Log_Manager. The following sub-
sections present these components in more detail.

4.3.1 Persistence Support

The persistence support provides three basic functionalities:

 • It provides a device independent interface that is used by the cache manager to
store the state of transactional objects on some non-volatile storage.

 • It provides stable storage (not affected by crash failures) to the log manager.

 • It provides a means for identifying transactional objects stored on some storage
device which is independent of the actual device used.

The implementation is based on the persistence support presented in [12].

4.3.2 The Cache Manager

The state of transactional objects is kept in main memory in order to improve the per-
formance of the overall system, since accessing memory is in general significantly
faster than accessing non-volatile storage. However, in systems that are composed of
lots of transactional objects, it is often not possible to keep the state of all objects in
memory at a given time, and therefore it is sometimes necessary to replace objects that
are already in the cache.

In a conventional cache, any object can be chosen. The situation for a cache used in
a transaction system is more complicated [13]. Firstly, we distinguish between Steal
and No-Steal policy. In the Steal policy, objects modified by a transaction may be prop-
agated to the storage at any time, whereas in the No-Steal policy, modified objects are
kept in the cache at least until the commitment of the modifying transaction. We also
make a distinction on what happens during transaction commit. In the Force policy, all
objects that a transaction has modified are propagated to their associated storage unit
during the commit processing, whereas in the No-Force policy no propagation is initi-
ated upon transaction commit.

In practice, caches are very effective because of the principle of locality, which is
an empirical observation that, most of the time, the information in use is either the
same information that was recently in use (temporal locality), or is information
“nearby” the information recently used (spacial locality). The behavior of caches can
be tailored in order to get a better hit ratio, i.e. by adjusting the size of the cache, or by
choosing appropriate fetch and replacement algorithms. It is therefore important for
our framework to allow a user to define his own cache policy.

Again this flexibility is achieved by
providing an abstract root class
Cache_Manager, with abstract methods
such as Apply_Replacement_Policy.
An application programmer can choose
the appropriate cache policy depending Fig. 5: The Cache Manager Hierarchy

Cache_Manager

Apply_Replacement_Policy

LRU_Cache_Manager User_Defined_Cache

on the application requirements. She/he can also extend the cache manager hierarchy,
providing his own implementation as shown in figure 5.

Although introducing a cache is completely transparent for the users of the transac-
tion support, it significantly complicates the reasoning about the consistency of the
state of the system. When using a cache, the current state of a transactional object is
determined by the state of the object in the cache, or if it is not present in the cache, by
the state of the object on the storage. When a transaction aborts, the state changes
made on behalf of the transaction are undone in the cache. It might be that these
changes have already been propagated to the storage. However, we do not have to undo
them, since they will be undone the next time we update the state of the object on the
storage. When a transaction commits, we must ensure that at some time in the future,
the changes of the transaction will be propagated to the associated storage unit.

Using a cache has a significant impact on the actions that must be taken when
recovering from a crash failure. On a system crash, the content of the cache is lost, and
therefore, in general, the state of the objects on the storage can be inconsistent for the
following reasons:

 • The storage does not contain updates of committed transactions.

 • The storage contains updates of uncommitted transactions.

When recovering from a system crash, these situations must be remedied. The former
problem can be solved by redoing the changes made by the corresponding transac-
tions, the latter by undoing the changes made by the corresponding transactions.
Depending on the cache policy, undo, redo or both are necessary [14].

Undo/Redo
The Undo/Redo recovery protocol requires both undo and redo actions and allows
great flexibility in the management of the cache by permitting Steal and No-Force
object replacement policies. It maximizes efficiency during normal operation at the
expense of less efficient recovery processing.

Undo/No-Redo
The Undo/No-Redo recovery protocol requires undo but never redo actions by ensur-
ing that all the updates of committed transactions are reflected in the storage. It there-
fore relies on Steal and Force object replacement policies. The commitment of a
transaction is delayed until all its updates are recorded on non-volatile storage.

No-Undo/Redo
The No-Undo/Redo recovery protocol, also known as logging with deferred updates,
never requires undo actions, but relies on redo actions. Updates of active transactions
are not propagated to the storage, but recorded in the system log, either in the form of
an after-image of the state or as a list of invoked operations, also called an intention
list.

4.3.3 The Log Manager

The system log is a sequential storage area located on stable storage. It is important
that the log is stored on stable storage, since it must always remain readable even in the
presence of failures in order to guarantee the correct functioning of the transaction sys-

tem. The purpose of the log is to store the information necessary to reconstruct a con-
sistent state of the system in case a transaction aborts or a system crash occurs. The
required information can be split into 3 categories:

 • Undo Information

 • Redo Information

 • Transaction Status Information

This information is organized in a hierar-
chy as shown in figure 6.

There are two situations in which the
log must be updated:

 • A transaction is committed or aborted.

 • An operation that modifies the state of a transactional object is invoked.

Undo and redo information can be stored in the log in two ways. In the first technique,
called physical logging [3], copies of the state of a transactional object are stored in the
log. These copies are called before-images or after-images, depending on if the snap-
shot of the state of the object has been taken before or after invoking the operation.
Unfortunately, physical logging only works if read/write concurrency control is used.
If semantic-based concurrency control such as commutative locking schemes are used,
undo and redo information must be saved using logical logging. In this technique, the
operation invocations and their parameters are written to the log. In order to support
undo, every operation op of a transactional object must provide an inverse operation
op-1, i.e. an operation that undoes the effects of calling op.

These two logging techniques are cap-
tured in the class hierarchy presented in
figure 7.
After a system crash, the entire log needs
to be scanned in order to perform all the
required redo and undo actions. What
algorithm must be used to recover from a

crash, depends on the chosen recovery strategy and is detailed in [13]. The same paper
also shows how to prevent the log from growing too long by using a technique called
checkpointing.

Log_Information

Transaction_Info Object_Information

Undo Redo

Undo_Information Redo_Information

Fig. 6: Log Information

Logging_Technique

Physical_Technique Logical_Technique

Undo
Redo

Fig. 7: Logging Techniques

Fig. 8: The Recovery Manager Hierarchy

Recovery_Manager

Begin_Transaction
Abort_Transaction
Commit_Transaction
Pre_Operation
Post_Operation
Recover
Recover_Object

Redo_RecoveryUndo_Recovery Undo_Redo_Recovery

4.3.4 The Recovery Manager

The Recovery_Manager implements the recovery strategy, and therefore controls the
Cache_Manager and the Log_Manager. Again, a class hierarchy of recovery managers
is provided to the application programmer. She/he can select the most appropriate
recovery strategy for his application by instantiating one of the concrete recovery man-
agers shown in figure 8.

5 Auction System

This section describes how open multithreaded transactions can be used to structure an
electronic auction system. The general idea of such a system is the following: First, a
user must register with the system by providing a username and password, and deposit
some money, most of the time in form of a credit card number. From then on, the user
can login and consult the current auctions. He can decide to bid for items he wants to
acquire, or sell items by starting new auctions.

Such an auction system is an example of a dynamic system with cooperative and
competitive concurrency. The concurrency originates from the multiple connected
users, that each may participate in or initiate multiple auctions simultaneously. Inside
an auction, the users cooperate by bidding for the item on sale. On the outside, the auc-
tions compete for external resources such as the user accounts. The system is dynamic,
since a user must be able to join an ongoing auction at any time. An additional non-
functional requirement of such a system is that it must be fault-tolerant, e.g. money
transfer from one account to the other should not be executed partially, even in the
presence of crash failures.

All these requirements can be met if an individual auction is encapsulated inside an
open multithreaded transaction. The seller starts the auction, the individual bidders
join it if they want to place a bid.

Implementation in Ada

Figure 9 shows how the main program
must initialize the transaction support. The
package Object_Based_Transaction_

Interface defines the object-based inter-
face to the transaction support as men-
tioned in section 3. The other context
clauses define the transactional objects
that are used in this example, namely auc-
tions and accounts.

Before starting a transaction, the pro-
grammer must call the System_Init pro-
cedure. This procedure can take additional
parameters that allow the application pro-
grammer to customize the transaction sup-
port according to his needs. In particular, a
recovery manager, a cache manager, and a

with Object_Based_Transaction_Interface;
use Object_Based_Transaction_Interface;

with Transactional_Auctions;
use Transactional_Auctions;

with Transactional_Accounts;
use Transactional_Accounts;

with File_Storage_Params;
use File_Storage_Params;

procedure Main is
-- Task and other declarations

begin

System_Init;

-- Run auctions

System_Shutdown;

exception

when others =>
System_Shutdown;

end;

Fig. 9: System Initialization

storage unit to be used to store the log can be specified. The default implementation
chooses a LRU cache manager, a Redo/NoUndo recovery manager, and a mirrored file
for storing the log.

The package Transactional_Auct-ions defines the auction objects, with the
operations Create_Auction, Restore_ Auction, Get_Current_Bid, Accept_Bid,
Finished and Bid_Accepted. The package Transactional_Accounts defines the
account objects, with the usual operations Deposit, Withdraw and Get_Balance.
Figure 10 shows how the seller tasks and bidder tasks make use of these objects when
performing an auction.

The seller task begins its work by declaring a reference to a transactional auction,
and then asks the user to input the duration of the auction. Next, a new open multi-
threaded transaction named “Auction” is started by declaring a Transaction object;
the scope of the transaction is linked to the scope of this object. Inside the transaction,
a new auction object is created by calling the Create_Auction operation. The
Storage_Params_To_String function of the File_Storage_Params package is called
in order to tell the system to store the state of the auction object in the file “Auc-
tion.file”. Then, the seller task suspends itself for the duration previously specified by
the user.

The bidder tasks join the ongoing transaction by also declaring a transaction object.
This time, the object is initialized with a call to Join_Transaction. The bidder task
then obtains the current bid from the auction object, and asks the user for his new bid.
Next, the Bid operation of the auction object is invoked. Other bidder tasks will see the

task body Seller_Task is

Auction : Transactional_Auction_Ref;
Auction_Time : Duration := Ask_User;
Auction_Transaction : Transaction

(new String’ (“Auction”));
Current_Bid : Natural;

begin

Auction := Create_Auction (String_To_
Storage_Params (“Auction.file”),
-- + initialization parameters,
-- e.g. description, minimum bid...

delay Auction_Time;

Current_Bid :=
Get_Current_Bid (Auction.all);

if Current_Bid >= Minimum_Bid then
Accept_Bid (Auction.all);
declare

My_Account : Transactional_
Account_Ref := Restore_
Account (String_To_Storage_
Params (“Seller_Acc.file”));

begin
Deposit

(My_Account.all, Current_Bid);
end;

end if;

Commit_Transaction
(Auction_Transaction);

end Seller_Task;

task body Bidder_Task is

Auction_Transaction : Transaction
(new String’ (“Auction”));

Auction : Transactional_Auction_Ref
:= Get_Auction;

Current_Bid : Natural;
My_Bid : Natural;

begin

while not Finished (Auction.all) loop
Current_Bid :=

Get_Current_Bid (Auction.all);

My_Bid := Ask_User (Current_Bid);

Bid (Auction.all, My_Bid);

end loop;

if Bid_Accepted (Auction.all) then
declare

My_Account : Transactional_
Account_Ref := Restore_Account
(Storage_Params_To_String
(“Bidder_Acc.file”));

begin
Withdraw

(My_Account.all, My_Bid);
end;

end if;

Commit_Transaction
(Auction_Transaction);

end Bidder_Task;

Fig. 10: Seller and Bidder Tasks

new bid, for they are all participants of the same transaction, and, in turn, are allowed
to place new bids. When the time-out expires, the seller task accepts the current bid,
deposits the money on his account and commits the transaction. The bidders leave the
loop and the bidder that won the auction withdraws the money from its account. The
open multithreaded transaction ends once the last bidder calls Commit_Transaction.

If any unforeseen exception is raised inside the transaction, the transaction is
aborted and the predefined external exception Transaction_Abort is raised in all
other participants. The abort results in undoing the deposit and withdrawal, and in
deleting the created auction object. This also holds in case of a crash failure.

6 Conclusions and Future Work

This paper has presented the design of the OPTIMA framework supporting Open Mul-
tithreaded Transactions, a transaction model that does not restrict the concurrency fea-
tures found in Ada, but still keeps the tasks participating in a transaction under control,
enforcing the ACID properties. The framework makes heavy use of design patterns in
order to maximize modularity and flexibility. Using object-oriented programming
techniques it can be easily customized and tailored to specific application needs. A
more detailed description of the OPTIMA framework can be found in [15].

Interfaces for the Ada programmer have been laid out. The framework has been
implemented in form of a library based on standard Ada only. This makes our
approach useful for any settings and platforms which have standard Ada compilers.

The paper also describes parts of an implementation of an auction system based on
open multithreaded transactions. This case study has shown the benefits of using open
multithreaded transactions for system structuring and fault-tolerance in concurrent sys-
tems.

The open multithreaded transaction model does support distribution, but the cur-
rent framework only addresses single nodes. In the future, we intend to add distribu-
tion to our framework. This has an impact on the transaction support component,
which must be extended to provide distributed transaction control (i.e. two phase com-
mit protocol), and on the cache manager, which must provide distributed access to
transactional objects. Another promising direction of the research is to try and inte-
grate the transaction support with the CORBA Object Transaction Service [16]. Using
our transaction support an application programmer can easily implement a transac-
tional CORBA resource. Our intentions are to provide a bridge that will intercept calls
to the prepare, rollback and commit methods of CORBA resources and forward
them to our transaction support.

7 Acknowledgements

Jörg Kienzle has been partially supported by the Swiss National Science Foundation
project FN 2000-057187.99/1. Alexander Romanovsky has been partially supported
by the EC IST RTD Project on Dependable Systems of Systems (DSoS). Ricardo
Jimenez-Peris and Marta Patino-Martinez have been partially supported by the Span-
ish Research Council (CICYT) grant #TIC98-1032-C03-01 and by the Madrid
Research Council (CAM) grant #CAM-07T/0012/1998.

References

[1] ISO: International Standard ISO/IEC 8652:1995(E): Ada Reference Manual, Lec-
ture Notes in Computer Science 1246, Springer Verlag, 1997; ISO, 1995.

[2] Wolf, T.; Strohmeier, A.: “Fault Tolerance by Transparent Replication for Distrib-
uted Ada 95”. In Harbour, M. G.; de la Puente, J. A. (Eds.), Ada-Europe’99,
pp. 411 – 424, Lecture Notes in Computer Science 1622, 1999.

[3] Gray, J.; Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers, San Mateo, California, 1993.

[4] Kienzle, J.; Romanovsky, A.: “Combining Tasking and Transactions, Part II:
Open Multithreaded Transactions”. 10th International Real-Time Ada Workshop,
Castillo de Magalia, Spain, to be published in Ada Letters, ACM Press, 2001.

[5] Goodenough, J. B.: “Exception Handling: Issues and a Proposed Notation”. Com-
munications of the ACM 18(12), pp. 683 – 696, December 1975.

[6] Kienzle, J.: “Exception Handling in Open Multithreaded Transactions”. In
ECOOP Workshop on Exception Handling in Object-Oriented Systems, Cannes,
France, June 2000.

[7] Patiño-Martinez, M.; Jiménez-Peris, R.; Arevalo, S.: “Exception Handling in
Transactional Object Groups”. In Advances in Exception Handling Techniques,
Lecture Notes in Computer Science 2022, Springer Verlag, 2001.

[8] Patiño-Martinez, M.; Jiménez-Peris, R.; Arevalo, S.: “Integrating Groups and
Transactions: A Fault-Tolerant Extension of Ada”. Reliable Software Technolo-
gies - Ada-Europe’98, pp. 78 – 89, Lecture Notes in Computer Science 1411,
1998.

[9] Jiménez-Peris, R.; Patiño-Martinez, M.; Arevalo, S.: “TransLib: An Ada 95 Ob-
ject-Oriented Framework for Building Transactional Applications”. Computer
Systems: Science & Engineering Journal 15(1), 2000.

[10] Kung, H. T.; Robinson, J. T.: “On Optimistic Methods for Concurrency Control”.
ACM Transactions on Database Systems 6(2), pp. 213 – 226, June 1981.

[11] García-Molina, H.: “Using Semantic Knowledge for Transaction Processing in a
Distributed Database”. ACM Transactions on Database Systems 8(2), pp. 186 –
213, June 1983.

[12] Kienzle, J.; Romanovsky, A.: “On Persistent and Reliable Streaming in Ada”. In
Keller, H. B.; Plöderer, E. (Eds.), Reliable Software Technologies - Ada-Eu-
rope’2000, pp. 82 – 95, Lecture Notes in Computer Science 1845, 2000.

[13] Haerder, T.; Reuter, A.: “Principles of Transaction Oriented Database Recovery”.
ACM Computing Surveys 15(4), pp. 287 – 317, December 1983.

[14] Bernstein, P. A.; Goodman, N.: “Concurrency Control in Distributed Database
Systems”. ACM Computing Surveys 13(2), pp. 185 – 221, June 1981.

[15] Kienzle, J.: Open Multithreaded Transactions: A Transaction Model for Concur-
rent Object-Oriented Programming. Ph.D. Thesis, Swiss Federal Institute of
Technology Lausanne, Switzerland, April 2001, to be published.

[16] Object Management Group, Inc.: Object Transaction Service, May 2000.

	Transaction Support for Ada
	1 Introduction
	2 Open Multithreaded Transactions
	3 Ada Interface
	4 The OPTIMA Framework
	4.1 Transaction Support
	4.2 Concurrency Control
	4.3 Recovery Support
	4.3.1 Persistence Support
	4.3.2 The Cache Manager
	4.3.3 The Log Manager
	4.3.4 The Recovery Manager

	5 Auction System
	6 Conclusions and Future Work
	7 Acknowledgements
	References

